Reproducible dispensing of live cells with the Thermo Scientific Multidrop Combi reagent dispenser

Sini Suomalainen, Vuokko Kytöniemi and Merja Mehto, Thermo Fisher Scientific, Vantaa, Finland

Introduction

High throughput cell-based assays are an important part of drug screening, and successfully dispensing viable cells is a key step in the process. Automated reagent dispensers are used to achieve higher throughput in the screening laboratories. Dispense must not only be quick, it must also be gentle enough to ensure cell viability.

Here we present the process of dispensing live HeLa S3 cells with the Thermo Scientific Multidrop Combi instrument into 96- and 384-well plates and compare the viability of cells to conventional hand-pipetting. The peristaltic pump technology used in the Multidrop® Combi reagent dispenser and optimized dispensing cassettes assure fast dispensing of cells on any multi-well plate and well size for any cell-based assay.

Materials and methods

Culturing the cells

The HeLa S3 cells were grown in adherent culture, Kaighn's media with FBS and penicillin/streptomycin, in cell culture flasks at 37°C with 5% CO₂. The cells were maintained at 0.2 - 0.6 x 10⁶ cells/ml by passaging them 1:5 - 1:8 every three days.

Detaching and dispensing

The number of cells was calculated after the cells were detached from the bottom of the flask with trypsin and the media was changed. The Multidrop Combi reagent dispenser was used to dispense the cell suspension and reagents. The tubings were pre-wetted with PBS and primed with cell suspension before dispensing the actual samples. Otherwise the priming, dispensing and cleaning of the dispensing cassettes was performed according to the maintenance guide for cell dispensing with the Multidrop Combi dispenser (1). When dispensing several plates, the cassette was primed before each plate. The Thermo Scientific Finnpipette Focus was used to dispense the cells for the control wells.

The Multidrop Combi was used to dispense 100 µl volumes of the cell suspension into wells of Thermo Scientific Nunc Microwell 96 F-microplates with the standard tube-dispensing cassette, and 30 µl volumes into wells of 384 Optical Bottom plates with the small tube plastic tip dispensing cassette. This resulted as cell concentration of 5000 cells per well in 96-well plate and 2000 cells per plate in 384-well plate, respectively. The cells were automatically dispensed into columns 1-10 of the 96-well plates and columns 1-22 of the 384-well plates.

The same number of cells was added by hand-pipetting into the second-to-last column of the plates, and growth media was dispensed into the last column for the blank control. Cells were dispensed in four replicate plates for both plate types.

Cell viability assay

The viability of the cells after dispensing was tested with CellTiter 96® AQ one Solution Cell Proliferation Assay (MTS). Before dispensing...
the cells, the AQ reagent was dispensed with the Multidrop Combi instrument and the small tube plastic tip dispensing cassette into the wells. The volume of the AQ reagent was 20 µl/well for the 96-well plates and 6 µl/well for the 384-well plates.

The plates were incubated for 2 hours at 37°C. The Thermo Scientific Varioskan Flash reader was then used to record the absorbance at 490 nm.

Results

Visual examination

The adherent HeLa S3 cells were visually examined under the microscope before detaching the cells, and were found to be viable (figure 1a). The number of cells was then calculated after detachment and the visual estimation with the microscope was done again after dispensing the cells into the microplate with Multidrop Combi (figure 1b). The cells in the suspension were viable and intact after dispense. The cells were further cultivated, and the cell culture adhered to the microplate and continued growing evenly (figure 1c).

Cell viability assay

The cell proliferation assay demonstrated that the levels of viability for the cells dispensed with the Multidrop Combi and the manual pipette were the same.

Figure 1c) Cells 24 hours after adhering to the 96-well plate bottom

Figure 2a) shows the evenness of dispense with the standard tube-dispensing cassette into the 96-well plate. The result of the column is the average value of the wells in one column, e.g. wells A01-H01.

Figure 2b) shows the same even distribution with the small tube plastic tip dispensing cassette. The average of the column is calculated from each column, e.g. A01-P01.

Cell viability is comparable to hand pipetting with both cassettes and plate.
Conclusions

The cell viability assay demonstrated that the Multidrop Combi dispenser is suitable for handling live cells. The cells remained intact and viable after dispense, and there were no traces of mechanical stress on the cells. Both the standard tube and small tube plastic tip dispensing cassettes show excellent precision for cell dispense.

The main issue to obtain reproducible cell dispensing results is the evenness of the cell suspension and the maintenance of the dispensing cassette to avoid any clogging of the tubing or the tips.

References

1. Maintenance guide for cell dispensing with the Thermo Scientific Multidrop Combi, Technical Note TN-ALH-MDcombi01-0209
 www.thermo.com/eThermo/CMA/PDFs/Various/File_10543.pdf

Further Information

For further information about the Multidrop Combi, please refer to the following web pages:
- www.thermo.com/multidrop
- www.thermo.com/mpi