关于赛默飞世尔科技

赛默飞世尔科技（纽约证交所代号：TMO）是科学服务领域的企业领导者。我们坚定地致力于帮助客户使世界更健康、更清洁、更安全。

在中国，赛默飞致力于帮助客户使世界变得更安全。我们拥有遍布全国的销售和服务中心，为客户提供专业的教育和技术支持服务。我们承诺，赛默飞将不断推动科技的创新和应用，以满足客户的需求，促进社会的可持续发展。

我们欢迎您浏览我们的网站，了解我们的产品和服务。

www.thermofisher.com
目录

第一部分 离子色谱在食品饮料分析中的应用 4

一、阴离子 .. 4
 1. 面粉和面制品中的溴酸盐 .. 4
 2. 食品中的亚硫酸根 .. 6
 3. 奶粉和奶制品中的碘离子和硫氰酸根 7
 4. 食盐中的碘离子和硫氰酸根 .. 8
 5. 食品中的硝酸盐和亚硝酸盐 .. 9
 6. 牛奶和乳制品中的三聚氰胺 .. 9
 7. 奶粉中的高氯酸盐 .. 11
 8. 水产品中的多聚磷酸盐 .. 12
 9. 食品中的甜味剂和防腐剂 ... 13
 10. 皮革浸提液中的三价铬和六价铬 .. 13
11. 面粉中的丙酸根 .. 14
12. 味精中的硫离子 .. 15

二、有机酸 .. 16
 1. 果汁中的有机酸和无机阴离子同时检测 16
 2. 蜂蜜中的有机酸 .. 17
 3. 啤酒中的有机酸与阴离子 ... 17
 4. 蒸馏白葡萄酒中的有机酸 .. 18
 5. 烟草中的有机酸 .. 18
 6. 蔓越橘中的有机酸 .. 19
 7. 番茄产品、牛奶和咖啡的有机酸 .. 19

三、胺与其它有机碱 ... 20
 1. 常见阳离子、甲胺和与乙胺同时分析 20
 2. 生物胺与常规阳离子的同时测定 .. 20
 3. 产品变质的指标物—生物胺 ... 21
 4. 鱼类产品中的生物胺 .. 21
 5. 干酪中的生物胺 .. 22
 6. 啤酒中的生物胺 .. 22
 7. 奶粉中的有机阳离子，胆碱，乙酰胆碱以及乌拉胆碱 22

四、碳水化合物 ... 24
 1. 糖醇与单糖、双糖的检测 ... 24
第二部分 离子色谱在药物分析中的应用 38

一．阴离子和有机酸 ... 38
1．药物中的阴离子和有机酸 ... 38
2．中药材中二氧化硫的测定 .. 39
3．阿米卡星的检测 .. 39
4．帕米膦酸二钠 ... 40
5．含氮类抗生素美沙芬的止咳糖浆 41
6．复方感冒药 ... 41
7．蛋白药物中的三氟乙酸的测定 ... 41
8．柠檬酸和磷酸的测定 ... 42
9．水杨酸的测定 .. 42
10．布洛芬（2-（4-异丁基苯基）丙酸） 43
11．氯膦酸二钠 ... 43
12．甲磺酸帕珠沙星中甲烷磺酸的测定 44

二．阳离子 ... 45
1．药物中的阳离子 .. 45
2．胆碱和乙酰胆碱的测定 .. 45
3．氯甲酰甲胆碱（氯贝胆碱） ... 46
4．抗组胺减充血剂中的阳离子测定 47
5．头孢吡肟中的N-甲基吡咯烷 ... 47

三．抗生素 ... 48
1．妥布霉素的检测 .. 48
2．庆大霉素的检测 .. 49
3．奈替米星的检测 .. 49
4．卡那霉素的检测 .. 50
5．新霉素的检测 ... 50
6．阿米卡星的检测 .. 51
7．链霉素和二氢链霉素的检测 ... 52
8．林可霉素的检测 .. 52
9．大观霉素的检测 .. 53

第三部分 透析技术 .. 54
1．在线过滤去除样品中的固体颗粒物 54
2、在线检测样品中的超痕量组分 ... 54
3、在线加标及在线标准曲线的制作 55
4、在线去除样品中的碳酸根 ... 55
5、在线去除样品中的氯离子 ... 56
6、在线中和检测浓碱中的阴离子 ... 57
7、在线中和检测浓酸中的阴离子 ... 57
8、在线去除样品中的疏水性组分 ... 58
9、检测反相试剂中的常规阴离子 ... 58
10、在线去除样品中的重金属 ... 59

附录1、饮用水、环境、食品和药品分析应用资料 60

1、Dionex在饮用水和环境分析领域中的应用资料注解 60
2、Dionex在食品分析领域中的应用资料注解 61
3、Dionex在医药卫生领域中的应用资料注解 61
4、Dionex在生命科学领域中的应用资料注解 62
5、Dionex在化工与电子领域中的应用资料注解 63
6、Dionex在其他领域中的应用资料注解 64

附录2、国际官方公布的离子色谱标准分析方法 65

一、与饮用水和环境有关部分 ... 65
1、美国国家环保局（EPA） .. 65
2、美国职业安全与健康国家研究所（NIOSH） 66
3、美国材料与试验协会（ASTM） .. 66
4、美国职业安全与健康署（OSHA） 67
5、美国水和废水标准分析方法（SMEWW） 67
6、国际标准组织（ISO） .. 67
7、美国官方分析化学家协会方法（AOAC） 67

二、与食品饮料有关部分 ... 68
1、美国官方分析化学家协会方法（AOAC） 68

三、与药物有关部分 ... 68

附录3、国内与离子色谱有关的标准方法 69

一、与环境有关部分 ... 69
二、与食品饮料有关部分 ... 71
三、与化妆品有关部分 ... 72
四、其他 ... 72
第一部分 离子色谱在食品饮料分析中的应用

一、阴离子

1. 面粉和面制品中的溴酸盐

溴酸钾作为一种添加剂添加在面包专用粉中已经有近百年的发展。它起到两种作用，一是增白，二是对面团起到一种紧致的作用。使用了溴酸钾后的面粉和面包的一致特征是面粉更白，制作出来的面包更具有弹性和韧性，外观更加漂亮。

溴酸钾的添加有两种途径，一是在面粉生产过程中使用，二是在面包制作过程中添加。正规大型面粉企业对面团烘焙温度和溴酸盐在烘焙物中的残余量都有严格标准。但知情人士称，由于各个企业烘焙技术不同，对于溴酸钾在面包中残留量多少难以做到真正的监管。

日美科学家在多年前的实验中，已发现溴酸钾是一种致癌物质，过量食用会损害人的中枢神经、血液及肾脏。国际癌症研究机构也已将该化合物列为致癌物质。实际上世界卫生组织在几年前就已经建议禁止使用溴酸钾，欧洲国家目前也已不再使用。中国国家质检总局和国家标准化委员会联合发出《关于停止使用溴酸钾作为面粉添加剂的通知》（国质检监联[2005]197号）：自2005年7月1日起，食品生产加工企业在生产过程中不能使用溴酸盐。中华人民共和国卫生部5月30日发布《2005年第9号公告》，在GB2760《食品添加剂使用卫生标准》中取消溴酸钾作为面粉添加剂使用。

2006年7月1日，中华人民共和国卫生部质量监督检验总局与中国国家标准化管理委员会发布了“小麦粉中溴酸盐的测定 离子色谱法”国家标准GB/T 20188-2006。

1.1 样品制备

小麦粉样品：准确称取10g（精确至0.1g）小麦粉250mL具塞三角瓶中，加入100.0mL去离子水，迅速摇匀后置振荡器上振荡20min（或在间歇搅拌下于超声波中提取20min），静置，转移20mL上层液于50mL离心管中，3000r/min离心20min，上清液备用。

以上上清液为水性样品滤膜过滤后进入下面的净化步骤。

经过过滤的样品用固相柱净化。对含Cl-高的样品，选用OnGuard II Ag/H柱去除样品提取液中的Cl-，弃去前5ml流出液，收集其后2ml流出液进行下一步净化，对含Cl-量在1g/kg以下的小麦粉，也可省略此条件操作，直接进入下一步净化过程。

上述溶液过OnGuard II RP柱，弃去前5ml流出液，收集其后2ml直接进行色谱分析。也可采用脂溶分子量为10000MW的超滤膜法进行处理，取所得清液进行色谱分析。

1.2 离子色谱测定条件——IonPac AS19梯度分离，电导检测（图1-1）

(GB/T20188-2006 小麦粉中溴酸盐的测定-离子色谱法)

- 色谱柱：IonPac AS19 4×250mm（带IonPac AG19保护柱）
- 流动相：KOH梯度，由RFC-30或EG自动淋洗液发生器自动产生
- 抑制剂：ASRS 4mm 阴离子抑制器，外加水抑制模式，抑制电流100mA
- 检测器：电导检测器，检测池温度：30℃
- 进样量：根据样液中BrO3-含量选择进样20-200μL

图1-1. 面粉样品连续7次进样色谱图
1.3 离子色谱测定条件—IonPac AS23柱等度分离，电导检测（图1-2）

- 色谱柱：IonPac AS23分离柱+ IonPac AG23保护柱
- 淋洗液：4.5 mM Na₂CO₃ + 0.8 mM NaHCO₃，等度淋洗
- 流速：1.0 mL/min
- 进样体积：100 µL
- 检测器：电导检测器，检测池温度：30 ℃
- 抑制剂：ASRS 4mm阴离子抑制器，外加水抑制模式

图1-2. 面粉样品连续9次进样色谱图

1.4 离子色谱测定条件—IonPac AS19柱分离，紫外检测（图1-3和图1-4）

- 色谱柱：IonPac AS19，4 × 250 mm(带IonPac AG19保护柱)
- 淋洗液：KOH梯度，由RFC-30或EG自动淋洗液发生器自动产生
- 流速：1.0 ml/min
- 进样量：200 µL
- 检测器：紫外检测器，352 nm
- 柱后衍生：
 - 衍生试剂：0.26 mol/L KI(含0.43 µmol/L 钼酸铵)，0.3 mL/min
 - 抑制剂：AMMS300或ASRS300，外接0.15 mol/L H₂SO₄，2.5 ml/min
 - 衍生反应管：375 µL
 - 衍生反应温度：80 ℃

图1-3. 某品牌饼干样品及其加标谱图

图1-4. 某面包样品及其加标谱图
2. 食品中的亚硫酸盐

亚硫酸盐作为防腐剂和增白剂广泛用于食品行业。目前FDA（美国食品和药品管理局）批准的可用作食品添加剂的亚硫酸盐类试剂有：二氧化硫、亚硫酸钠、亚硫酸氢钠和亚硫酸氢钾等。亚硫酸盐与食品中的糖、蛋白、色素、酶、维生素、醛、酮等作用后，以游离型和结合型的亚硫酸根形式残留在食品中。食品加工工艺中还常使用硫磺作为漂白剂蒸煮，使食品中残留一部分游离的二氧化硫。但由于亚硫酸根、二氧化硫被认为对人有潜在的危险性，甚至有间接的致癌作用，因此各国对食品中残留的亚硫酸根、二氧化硫均进行严格的控制。美国食品药品管理局限定产品中含有10mg/kg或高于该指标的亚硫酸盐时必须在产品的标签上注明含量。

食品中亚硫酸盐检测的方法为离子色谱法，既可使用安培检测器，也可以使用电导检测器。其中安培检测法容易受甲苯干扰，电导检测时则受样品基体严重干扰。通过优化前处理方法和分离条件，我们提出了酸性条件下水蒸气蒸馏提取亚硫酸及AS9-HC分离的方法，并且进入了新版国标。

样品前处理方法如下：固体样品：称取约2.5g（精确至0.001g）经充分混匀的样品于蒸馏管中，加入约5mL 5%磷酸钠，震荡2min，再加入20mL（1+1）硫酸。立即接到蒸馏器上，水蒸气蒸馏，用10mL 0.5 mol/L 氢氧化钠溶液吸收至蒸馏体积100mL为止。经强离子交换柱固相萃取法（SCX）过滤后的滤液作为待测样液。

测试条件如下：AG9-HC + AS9-HC，氢氧化钠[cNaOH=1.5 mmol/L] 及磷酸钠【cNaHCO3=7.5 mmol/L】溶液，流速1.0 mL/min，电导检测。图1-5为亚硫酸与常见阴离子及常见有机酸食品添加剂的分离图谱。

使用安培法时，样品经用淋洗液稀释、匀质，过滤后进样。图1-6和图1-7分别为香和柠檬汁样品中亚硫酸根的分析谱图（戴安应用数据AN 54）。

色谱条件：
- 色谱柱：IonPac ICE-AS6分析柱（4×250 mm）
- 淋洗液：20mN 硫酸
- 检测器：脉冲安培检测器

图1-5. 亚硫酸与常见阴离子及常见有机酸的分离图谱

图1-6. 香中亚硫酸根的色谱图

图1-7. 酸柠檬汁中亚硫酸根的色谱图
3. 奶粉和奶制品中的碘离子和硫氰酸根

1）奶粉和奶制品中碘离子和硫氰酸根的研究意义

近年来食品安全事故频繁发生，卫生部在食品安全方面的工作力度也逐年加大，2008年12月12日发布的《食品中可能违法添加的非食用物质和易滥用的食品添加剂品种名单（第一批）》中明确规定乳及乳制品中硫氰酸盐属于违法添加物质。健康牛的牛奶中平均含有0.9mg/kg的硫氰酸根，是乳制品过氧化物酶抗菌体系主要成分之一。但有些不法分子为了延长原料乳的保质期，人为加入硫氰酸盐作为生牛奶保鲜剂。但硫氰酸盐是毒害品，过量摄入人体可抑制甲状腺聚碘功能，引起甲状腺机能低下。

碘是影响身体和智力发育的必要元素，国家标准对每100g奶粉的碘含量要求是30至150μg，碘摄取不足或过量都会引起甲状腺肿大的疾病。由于儿童比成人更容易因碘缺乏或过量导致甲状腺肿大，而且婴幼儿所需碘主要来源于母乳及奶粉，所以对孕妇体液碘的监控和婴幼儿奶粉中碘的检测十分必要。

2）牛奶和奶制品中的碘离子和硫氰酸根的有关测定方法

碘离子的分析方法有很多，如示差脉冲溶出伏安法、催化光度法、电感耦合等离子体-原子光谱或质谱法、反相离子对色谱法和离子色谱法等，碘离子的紫外检测方法灵敏度远高于电导检测。硫氰酸根的检测方法有荧光动力学法、反相离子对色谱法和离子色谱法。色谱法检测奶粉中碘离子和硫氰酸根存在主要问题是因为奶粉基体过于复杂，容易对测定造成干扰。

3）牛奶和奶制品中的碘离子和硫氰酸根测定的推荐方法

3.1 牛奶和奶制品中硫氰酸根的测定

卫生部食品整治办[2009]129号 指定牛奶中硫氰酸根的检测方法如下：

- 色谱柱：IonPac AS16，4×250mm分析柱，IonPac AG16，4×50mm保护柱
- 流动相：KOH溶液梯度淋洗，0.13min-45mmol/L，13.1-18min70mmol/L，18.1-23min45mmol/L
- 流速：1.0mL/min
- 抑制剂：ASRS 4mm抑制器，外接水抑制模式，抑制电流175mA
- 柱温：30°C
- 进样体积：100μL

图1-8为奶制品中硫氰酸根分离图。

3.2 IonPac AS16色谱柱同时测定牛奶和奶制品中碘离子和硫氰酸根

使用IonPac AS16型亲水性阴离子交换色谱柱分离，紫外和电导两种检测方式串联检测，利用电导的检测结果来判断紫外检测的色谱峰纯度，并指导色谱条件的优化，最终通过紫外检测器获得高灵敏度的碘离子检测结果。硫氰酸根的紫外和电导检测方式灵敏度相近，电导检测方式干扰少，准确度更高。

- 色谱柱：IonPac AS16，4×250mm分析柱，IonPac AG16，4×50mm保护柱
- 流动相：55mmol/L KOH
- 流速：1.0mL/min
- 抑制剂：ASRS 4mm抑制器，外接水抑制模式，抑制电流140mA
- 紫外检测波长：236nm
- 柱温：30°C
- 进样体积：200μL

图1-9为IonPac AS16测定奶制品中碘离子和硫氰酸根的分离图。
3.3 WAX-1色谱柱同时测定牛奶和奶制品中碘离子和硫氰酸根

采用带有水解性固定相和弱阴离子交换官能团的混合分离模式色谱柱，实现了碘离子、硫氰酸根与样品中干扰峰的基线分离，紫外检测器检测[3]。

- 色谱柱：Acclaim Mixed-Mode WAX-1，4.6 × 250mm
- 淋洗液：45%乙腈+5%100mmol/L磷酸盐缓冲液（pH=6）+50%水（V/V/V）
- 流速：1.0 ml/min
- 检测波长：226 nm
- 进样量：200 µL

图1-10. 奶粉样品中碘离子和硫氰酸根分离谱图（1，1；2，SCN⁻）

4. 食盐中的碘离子和硫氰酸根

1）食盐中的碘离子和硫氰酸根的研究意义

碘与人类健康有关，碘缺乏病是一类典型的生物地球化学疾病。食盐加碘是我国消除碘缺乏病长期坚持的主导措施，准确、快速测定食盐中碘的含量有助于卫生部门有效开展碘缺乏病监测工作。

2）食盐中碘酸根的有关测定方法

碘酸钾食盐中碘的测定方法一般是按《GB/T13025.7-1999制盐工业通用试验方法碘离子的测定》直接以滴定法进行。此法操作过程比较耗时，且只能测定碘酸根。对碘酸根和碘离子共存的井矿盐区的加碘盐，测定时就不可靠，造成总碘结果不准确，超标产品被误判定为合格产品。

3）度量食盐中的碘离子和硫氰酸根测定的推荐方法

本方法可以同时测定碘离子和硫氰酸根，分析时间短，分离效果好，操作简便（度量应用注解AN236）。分离谱图如图1-11所示。

- 色谱柱：Acclaim Mixed-Mode WAX-1 5 µm，2.1 × 150 mm
- 洗涤液：50/50Methanol/120 mM NaH₂PO₄ (pH 3.00)
- 流速：0.20 mL/min
- 柱温：30°C
- 进样量：25 µL
- 检测器：UV，检测波长223 nm

样品：A) 硫氰酸根和碘离子标准溶液
B) 2.0 mg/mL 食盐溶液

色谱峰：A) 1. 硫氰酸根 7640 µg/L
2. 碘离子 249 µg/L
B) 1. 碘离子 96.6 µg/L

图1-11. 标样和食盐样品分析谱图
5. 食品中的硝酸盐和亚硝酸盐

在食品加工工业中，硝酸盐和亚硝酸盐常被用作发色剂、增香剂和防腐剂。如果保存和处理不当，在硝基还原酶的作用下，食品中的硝酸盐可能转化为亚硝酸盐。过量摄入亚硝酸盐可能导致食用者中毒，亚硝酸盐消化系统吸收后，可将血红素中Fe^{2+}氧化为Fe^{3+}，造成正常的血红蛋白被氧化为高铁血红蛋白，从而失去携氧能力，引发缺氧中毒症状。与此同时，亚硝酸盐会在食品或消化系统与蛋白分解产生的胺类物质生成强致癌作用的亚硝胺，对人的身体健康构成巨大危害。因此，食品中硝酸盐和亚硝酸盐的含量都必须得到有效监测，以保障人类生活安全。GB 2762-2005对食品中亚硝酸盐的含量进行了严格的限定，GB 5009.33-2010提供了食品中硝酸盐和亚硝酸盐的含量的检测方法，其中离子色谱法为第一法，其对亚硝酸盐和硝酸盐的检出限分别为0.2mg/kg和0.4mg/kg。

食品种类繁多，基质组成千差万别，针对不同类型的样品，请参照GB 5009.33-2010对样品进行预处理，然后参照如下色谱条件进行分离检测：

淋洗液梯度程度：
一般试样：6 mmol/L KOH，0-30 min；6-70 mmol/L KOH，30-111 min；70 mmol/L KOH，0.1-35 min；70-6 mmol/L KOH，35-35.1 min；6 mmol/L KOH，35.1-40 min；
流速：1.0 mL/min。

粉状婴幼儿配方食品：5 mmol/L KOH溶液，0-33 min；5-50 mmol/L KOH，33-33.1 min；50 mmol/L KOH，33.1-38 min；50-5 mmol/L KOH，38-38.1 min；5 mmol/L KOH，38.1-43 min；流速：1.3 mL/min。

- 色谱柱：IonPac AS11-HC，IonPac AG11-HC
- 抑制剂：ASRS连续自动再生膜离子抑制器
- 进样体积：50μL（可根据试样中被测离子含量进行调整）

典型食品样品的分离检测谱图如下图1-12和1-13所示：

![图1-12. 某肉粉样品中亚硝酸盐和硝酸盐的分离检测谱图（峰表：1-NO₂⁻，2-NO₃⁻）](image)

![图1-13. 某品牌婴儿奶粉样品中亚硝酸盐和硝酸盐的分离检测谱图（峰表：1-NO₂⁻，2-NO₃⁻）](image)

6. 牛奶和乳制品中的三聚氰胺

三聚氰胺，简称三胺，学名三氢三嗪，别名蜜胺、氰尿酰胺、三聚氰胺，是一种重要的氮环有机化工原料，具有一定的肾毒性。其分子中含有大量氮元素（大约66%），而用全氮法检测蛋白质含量时不能够区分这种“假蛋白氮”。不法分子为追求最大利益而不顾消费者的生命健康和安危，向产品中大量添加三聚氰胺粉以提高“蛋白质”含量。

三聚氰酸与三聚氰胺结构类似，在化工生产过程中经常同时存在。若在奶粉生产过程中直接加入化工原料三聚氰胺，也会同时掺入三聚氰酸。两者在人体内会最终于肾脏处结合成网格结构（不溶于水的大分子复合物）形成结石，造成肾脏积水，最终导致肾脏衰竭。婴幼儿由于主要营养来源来自于奶粉，大量食用含有三聚氰胺和三聚氰酸的奶粉，会形成肾结石，长期摄入可致肾衰竭和死亡。成年人长期摄入也会造成不同程度肾脏损伤。

2008年爆发的奶粉掺入三聚氰胺事件后，我国开始对牛奶及乳制品进行大规模监测。目前文献报道过的包括
GC-MS方法，离子对试剂液相色谱-紫外检测法，LC-MS法和LC-MS/MS法等。上述各种方法各有其优缺点。戴安在提供液相色谱解决方案的同时，也提供离子色谱检测牛奶及奶制品中三聚氰胺的方法。采用阳离子交换分离-紫外检测的技术，对奶粉中三聚氰胺进行了准确定量，前处理方法简便快速。该方法可操作性强，可保证样品检测的可重复性。此外，灵敏度可很好的满足国家限量要求，色谱柱使用寿命长。戴安可提供等度以及梯度两种分析方法。

6.1 前处理方法:

奶粉样品：称取1.00g奶粉样品，充分溶解于4mL去离子水中。使用色谱纯乙腈定容至10mL，充分混匀，室温沉降蛋白十分钟。取上清液，使用去离子水稀释十倍，依次过0.22μm尼龙滤头和活化过的OnGuardⅡRP柱。进样分析。

液态奶样品：取4mL牛奶样品，加入5mL色谱纯乙腈，充分混匀，室温沉降蛋白十分钟。取上清液，用去离子水稀释十倍，依次过0.22μm尼龙滤头和活化过的OnGuardⅡRP柱。进样分析。

6.2 分析方法

方法一：等度法测定奶粉及奶制品中的三聚氰胺

测试对象：奶粉、生鲜牛奶，最低检出限：0.06 mg/kg（液态奶）或者0.1 mg/kg（奶粉样品），样品加标回收率为85%-105%，实际样品重现性RSD小于4%。

色谱条件：
- 淋洗液：MSA（6mmol/L）或硫酸（3mmol/L）等度
- 色谱柱：CS17色谱柱 + CG17保护柱
- 柱温：30℃
- 进样体积：10μL
- 检测器：紫外检测器UV，240nm
- 分析时间：12min

图1-14. 5 mg/L三聚氰胺，出峰时间8.5min左右

图1-15. 阳性牛奶样品，三聚氰胺浓度67.2 mg/kg
方法二：梯度法测定奶粉及奶制品中的三聚氰胺

检测对象：奶粉、生鲜牛奶、液态奶、巧克力豆、奶糖、饼干等，本方法最低检出限为0.03 mg/Kg（液态奶）或0.05 mg/Kg（奶粉样品），样品加标回收率为77-121%，实际样品重现性RSD小于4%，结果令人满意。

色谱条件：
- 溶液：MSA梯度或硫酸梯度
- 色谱柱：CS17色谱柱 + GC17保护柱
- 柱温：30 ℃
- 进样体积：25 μL
- 检测器：紫外检测器，240nm

图1-16. 10 ppm三聚氰胺标准溶液色谱图，13.5分钟左右出峰

图1-17. 三聚氰胺阳性样品色谱图

图1-18 1C-MS检测高氯酸根实际样品及加标谱图

7. 奶粉中的高氯酸盐

近来，媒体报道了某些国际知名品牌的婴幼儿奶粉中检测到微量高氯酸盐，这是继三聚氰胺事件后又一起奶制品污染事件，引起了全社会的高度关注。高氯酸盐是一种持久性环境污染物，广泛用于火箭推进剂、导弹和烟火制造工业，使高氯酸盐很容易释放到环境中。研究表明，高氯酸盐会与碘竞争进入人体甲状腺，抑制甲状腺对碘的吸收，从而影响甲状腺功能，导致成人新陈代谢功能紊乱。影响胎儿和婴儿神经中枢的正常生长和发育。高氯酸盐的高暴露甚至会导致甲状腺病。2002年美国国家环保署（US EPA）规定饮用水中高氯酸盐的最大容许浓度为1 μg/L。

目前高氯酸盐的测定方法研究主要侧重于环境及饮用水方面，近年来对食品中高氯酸盐的测定也逐渐得到重视。高氯酸盐的检测方法最常见的是离子色谱法，但在常规的离子色谱法中，其他硫酸性阴离子（如硫代硫酸盐、硫代硫酸盐和碘化物）与高氯酸盐出现峰相近，干扰高氯酸盐的测定。而且如果样品中含有mg/kg级以上浓度的氯化物和硫酸盐也会干扰μg/kg级高氯酸盐的检测，降低高氯酸盐的灵敏度。采用离子色谱与质谱联用技术测定婴幼儿奶粉中的高氯酸盐，检测限可达1 μg/kg，则可满足检测要求。
本方法也适用于鲜牛奶、酸牛奶等其它乳制品中高氯酸盐的测定。

精密称取奶粉样品0.50g，加去离子水3.5mL使充分溶解混匀，再加入5mL乙腈振荡混匀，静置10分钟以沉淀蛋白。取上清液1mL，用去离子定容至10mL，将稀释后的溶液经过0.22µm尼龙滤膜和OnGuard II RP柱过滤，滤液直接上机分析。图1-18为IC-MS检测实际样品及加标谱图。

8. 产品中的多聚磷酸盐

多聚磷酸盐作为食品添加剂被广泛地应用在果汁和罐头食品中以保证食品不褪色、不损失香味。同样还被用来处理火腿、保鲜蔬菜、作奶酪的乳液稳定剂和冷冻食品的保湿剂。多聚磷酸盐在上述的应用中表现的功能主要取决于它的离解能力和缓冲能力，这与多聚磷酸盐的分子链长度有关。

但是，近些年对，有一些不法商贩利用了多聚磷酸盐可以加大肉类或海产品吸水性这一特点，在商品中人为注水，以次充好，以少充多，大大损害了消费者的利益。另外，多聚磷酸盐会促进血液凝结，其降解产物磷酸盐也可能增大摄入者心脑血管疾病发生的可能性，因此欧盟和日本分别限定了在本地区内销售的海产品中多聚磷酸盐的最大允许浓度，欧盟食品和饲料快速警示体系RASFF也在2006年第28、30、31、34、35周连续通报了9起中国出口海产品中多聚磷酸盐超标行为，这无疑将对我国海产品出口产生一定影响，而对于质检和商检部门，也提出了更高的要求。图1-19和图1-20分别为AS11-HC色谱柱分离标准溶液和实际样品提取液中聚磷酸盐的色谱图。

色谱条件：
- 色谱柱：IonPac AS11-HC分析柱（4×250mm）及保护柱
- 流速：1.0 mL/min
- 检测方式：电导检测，自身循环抑制，抑制电流180 mA
- 进样量：25 µL
- 淋洗液：NaOH梯度程序：0-9min，35-70 mmol/L，15-15.1min，70-35 mmol/L，20min，35 mmol/L

<table>
<thead>
<tr>
<th>梯度淋洗条件</th>
<th>时间（min）</th>
<th>水（%）</th>
<th>100 mmol/L NaOH （%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>起始</td>
<td>65</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>65</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>30</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td>30</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>65</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>65</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

图1-19. 多聚磷酸钠标准品色谱图

图1-20. 样品添加回收色谱图
9. 食品中的甜味剂和防腐剂

1）食品中的甜味剂和防腐剂的研究意义

随着现代食品工业的迅速发展，各种食品添加剂的应用日益广泛，添加剂种类不断增多，并且同一种食品中同时使用多种甜味剂、防腐剂，使食品质量监督的工作量增大，迫切需要灵敏准确的多种添加剂同时测定方法。

2）食品中的甜味剂和防腐剂的有关测定方法

方法研究了三种甜味剂（甜蜜素、安赛蜜、糖精钠）和两种防腐剂（山梨酸钾、苯甲酸钠）的测定方法。国标方法中甜蜜素、山梨酸钾和苯甲酸钠的第一测定方法为气相色谱法，但甜蜜素测定前处理方法复杂，干扰因素多。使用高效液相色谱方法可以对上述几种物质进行同时测定，但甜蜜素的紫外检测信号较弱。虽然可采用柱前衍生的方法以增强紫外信号的强度，但是增加了前处理步骤，也不能再同时测定其它甜味剂。

3）戴安对于食品中的甜味剂和防腐剂监测的推荐方法

由于这五种物质在碱性条件下都呈阴离子状态，并具有较高的电导响应，可以采用离子色谱梯度淋洗的方法进行同时分析。本方法分析速度快，灵敏度高，适用于多种类食品的测定，如白酒、红酒、饮料、蜜饯、腌菜、果冻、糕点等。该方法样品前处理非常简单，经过直接稀释或水提后，调整样品溶液pH至9-10，再通过C18固相萃取小柱净化即可。

- 色谱柱：IonPac AS17-C+AG17-C
- 淋洗液：KOH 0-13 min 6mM，13.1-23 min 70mM，23.1-26 min 6mM
- 淋洗液流速：1.0ml/min
- 抑制剂：ASRS 型抑制器 4 mm，外接水模式，抑制电流175mA
- 进样量：25μL

图1-21和1-22为两种典型样品中甜味剂和防腐剂的分离谱图。

10. 皮革浸提液中的三价铬和六价铬

1）皮革浸提液中的三价铬和六价铬的研究意义

铬是一种多价态金属，常见的离子形态为六价铬和三价铬，六价铬具有非常强的致癌和皮肤损伤作用。据统计世界上超过80%的皮革是铬鞣革，所用的铬鞣剂是三价的，但在碱性条件下，容易被氧化成六价铬。世界各国尤其是欧盟等发达国家，对皮革中六价铬含量有严格的限量控制。我国是皮革生产大国，也是出口大国，但是绿色贸易壁垒正在形成，做好皮革中铬含量的检测显得至关重要。

2）皮革浸提液中的六价铬的有关测定方法

测定革中六价铬含量有4个方法：(1)DIN53314，(2)IUC18，(3)SLC22及(4)EN4 20，这些方法都应用光度法分析。但是对于已染色皮样，提取液中染料等成分会干扰光度法分析结果，造成检测结果不准。

3）皮革浸提液中的三价铬和六价铬测定的推荐方法
采用EN420:1994或DIN53314-1996浸泡皮革粉，提取液过0.22 μm滤膜和OnGuard RP 前处理柱。三价铬先进行柱前衍生，然后与六价铬经过离子交换色谱分离。六价铬进行柱后衍生，最后分别通过紫外-可见检测器检测（分析方法请参考戴安应用文献TN24和AU165）。

- 色谱柱：IonPac CS5A 4 mm × 250 mm，IonPac CG5A 4 mm × 50 mm
- 淋洗液：2 mmol/L PDCA、2 mmol/L Na₂HPO₄、10 mmol/L NaI、50 mmol/L CH₃CO₂NH₄、2.8 mmol/L LiOH混合水溶液
- 衍生试剂：2 mmol/L DPC、10% (V/V) 甲醇、0.45 mol/L 硫酸
- 淋洗液流量：1.0 mL/min
- 衍生液流量：0.5 mL/min
- 检测波长：0～4.3 min，335 nm，4.3～8 min，530 nm
- 进样量：200 μL

图1-23为某样品中三价铬和六价铬的分离谱图。

11. 面粉中的丙酸根

丙酸钠在食品工业中常用作膨松剂、面团调节剂、缓冲剂、组织改进剂、固化剂、营养增补剂、螯合剂等。也用作制作焙制品、糕点的膨松剂，面包、饼干的助酵剂、缓冲剂、果胶固化剂(凝胶作用)以及酵母食料肉类制品组织改进剂等。丙酸钙则可用于焙烤面制品过程中，不仅防腐，同时还有抵抗霉菌形成霉菌毒素的作用。最新食品卫生标准中规定有丙酸盐的限量标准，我们使用离子色谱氢氧根体系梯度分析可很好的检测面粉及干湿面制品中的丙酸根。

样品首先经烘箱干燥，使用研钵研磨粉碎。然后进行取样，取样量2 g。置于100 ml锥形瓶中（针对面包、蛋糕等油脂含量较高的样品，首先加入30 ml石油醚（沸程30-60°C），室温摇床震荡20 min，重复三次，处理完毕后，烘箱烘干）。加入超纯水50 g，室温摇床震荡20 min。取上层清液，经6000 r/min离心10 min。取上层清液依次过0.22 μm滤膜，OnGuard II RP柱后，直接进样。样品当天处理，当天分析。

色谱条件:
- 色谱柱：IonPac AS15+AG15
- 淋洗液：KOH 0-20 min 6 mM, 20.1-40 min 60 mM, 40.1-45 min 6 mM
- 淋洗液流量：1.0 ml/min
- 抑制剂：ASRS 型抑制器 4 mm, 自循环模式, 抑制电流150 mA
- 进样量：25 μL

图1-24和1-25分别为面粉和面包样品中丙酸根的分离谱图。
12. 味精中的硫离子

味精，学名谷氨酸钠，是人类生活中最重要的调味品之一。其生产过程中设备用具的腐蚀、原材料纯度等导致味精中夹杂铁而变黄，影响味精的透光和外观色泽。生产上普遍使用硫化钠沉淀味精母液中的铁离子，但是加入量不好控制导致过量使用，造成样品中残留大量硫离子，影响人类健康。2008年12月12日，卫生部发布《食品中可能违法添加的非食用物质和易滥用的食品添加剂品种名单（第一批）》的通知，其中明文指出禁止味精生产过程中可使用硫化钠为加工助剂。生产过程难以监控，因此产品中硫化物的残留检测可作为判断是否使用硫化钠的一个重要依据。安培检测器是一种高选择性、高灵敏度的检测器，因而可进一步提高方法的抗干扰能力。本法提出了味精中硫化物的测定方法，同样利用高效阳离子交换色谱柱 IonPac AS7 分离，脉冲安培法检测，对味精、增鲜味精和加盐味精这三类样品中硫化物的含量进行了准确测定。

图1-26为某品牌加盐味精及其加标样品的对比谱图。样品分析时间在5.5 min以内，高含量氯对硫离子测定不存在干扰。

- 分析柱：IonPac AS7 分离柱(4×250mm)与IonPac AG7 保护柱(4×50mm)
- 淋洗液：100 mmol/L NaOH / 500 mmol/L NaOAc / 0.5 % (v/v) 乙二胺，等度淋洗
- 流速：1.00 mL/min
- 柱箱温度：30 ℃
- 进样体积：25 µL
- 安培检测器：银工作电极，Ag/AgCl 参比电极模式，三电位波形脉冲安培检测（氧化电位为-0.10 V）

样品：1. 某品牌加盐味精；
2. 加盐味精加标100 µg/L 硫离子
二、有机酸

有机酸存在广泛，种类繁多，是影响水果、果汁、果脯、酒、调味品等多种食品口感和风味的重要物质，它可以帮助表征产品的质量，指导储存食品是否变质，因此有机酸的检测是十分重要的必要性。抑制电导检测器对有机酸的灵敏度较高，低波长UV检测器约高10倍，因此食品中痕量的有机酸检测最好使用离子色谱法。通常可在一次分析中同时检测食品中的无机离子和有机酸。图1-27为常见有机酸和阴离子在AS11和AS11-HC上的分离情况对比。

- 柱 A：IonPac® AG11, AS11, 4 mm
- 流速：NaOH梯度，2.0 mL/min
- 柱 B：IonPac AG11-HC, AS11_HC, 4 mm
- 淋洗液：NaOH梯度，1.5 mL/min
- 温度：30℃
- 进样体积：10 µL
- 检测方式：抑制型电导, ASRS® ULTRA，4 mm，自循环模式

图1-27. 常见有机酸和阴离子在AS11和AS11-HC上的分离情况对比

1. 果汁中的有机酸和无机阴离子同时检测

果汁中有机酸图谱对于确定果汁的新鲜程度与是否掺假都是非常重要的，通常需要测定某些有机酸的比例，因为它是每个特定果汁的重要特征。如图1-28所示，橙汁、葡萄汁和苹果汁中主要及次要的有机酸及无机阴离子，可用梯度离子色谱同时高分辨率的检测出来，使用氮氧化钠梯度淋洗，IonPacAS11分析柱的反应表现得十分明显，分析柱可大约5分钟左右的时间内平衡至初始条件。淋洗液中加入甲醇对于某些性质极相近的有机酸的分离有所改善。

- 柱：IonPac® AS11
- 淋洗液：NaOH/甲醇梯度
- 流速：2.0 mL/min
- 检测方式：抑制型电导

图1-28. 橙汁、葡萄汁和苹果汁中有机酸及无机阴离子的分离谱图
2. 蜂蜜中的有机酸

国内外的养蜂过程经常使用一些有机酸，典型如甲酸、乙酸、丙酸、草酸和柠檬酸，可作为防治蜂螨剂、消毒剂和饲料保藏剂等，而苯甲酸则是常用的食品防腐剂之一。对蜂蜜中这些有机酸的准确测定则可借此判断有

机酸使用是否对蜂蜜的质量产生影响，同时也可研究不同蜜源地产出蜂蜜有机酸组分的差异。

常规蜂蜜检测中主要关注甲酸、乙酸、丙酸、草酸、柠檬酸和苯甲酸，利用AS11-HC高效阴离子色谱柱可较好分离这六种有机酸。此外，还可同时测定蜂蜜样品中共存的氯、硫酸根、硝酸根、磷酸根等常规阴离子。蜂蜜样品前处理比较简单，以热水溶解样品，加碱调节样品pH，再通过微孔滤膜和国产C18小柱（Agela）去除样品可能的疏水性物质。蜂蜜样品中有机酸的分离谱图如图1-29所示。

- 分析柱：IonPac AS11-HC 分离柱(4 × 250mm)与
 IonPac AG 11-HC 保护柱(4 × 50mm)
- 淋洗液（EG产生）：0-18 min，0.8 mmol/L
 18-33 min，0.8-50 mmol/L
 33.1-38 min，0.8 mmol/L
- 流速：1.00 mL/min
- 柱箱温度：30℃
- 进样体积：25 μL
- 检测方式：抑制型电导，ASRS 300 4mm，自循环模式
样品：1，甲酸；2，乙酸；3，丙酸；4，Cl−
5，NO3−；6，SO4−；7，草酸；8，苯甲酸；
9，PO4−；10，柠檬酸

3. 啤酒中的有机酸与阴离子

有机酸与无机阴离子是啤酒中的重要风味物质，阴离子还影响啤酒外观。图1-30为美国淡味啤酒中有机酸与
无机阴离子的高分辨解析情况，完成全部解析只需18分钟。

- 柱：IonPac® AG11，AS11
- 淋洗液：NaOH/甲醇梯度
- 流速：2 mL/min
- 进样体积：25 μL
- 检测方式：抑制型电导

![图1-29. 蜂蜜样品及加标对比谱图](image)

![图1-30. 美国淡味啤酒中有机酸与无机阴离子的分离](image)
4. 蒸馏白酒中的有机酸

蒸馏白酒中的有机酸组分具备典型的特征，主体有机酸常见有甲酸、乙酸、丙酸、丁酸、戊酸、己酸和乳酸，此外还可能含有极少量辛酸和庚酸。目前白酒中有机酸的检测方法多为气相色谱法，分离效果往往较差，尤其是甲酸，乙酸等弱保留组分，而且一般都需要经过衍生步骤。而使用离子色谱法AS11-HC色谱柱分离，抑制型电导检测则可较好检测蒸馏白酒样品中的乳酸、甲、乙、丙、丁、戊、己酸。常见氟离子、氯离子、硝酸根，硫酸根，磷酸根对这几种有机酸测定基本无干扰。酒样中含有的高含量乙醇不影响测定，具体可参见样品分离谱图在乳酸前出现的谷峰。样品前处理简单，无需衍生，稀释后可直接进样。某白酒样品中有机酸的分离谱图如图1-31所示。

- 分析柱：IonPac AS11-HC 分离柱(4 × 250mm)与 IonPac AG 11-HC 保护柱(4 × 50mm)
- 淋洗液（EG产生）：0-15 min，0.8 mmol/L；15-27 min，0.8-12 mmol/L；27.1-31 min，45 mmol/L；31.1-35 min，0.8 mmol/L
- 流速：1.00 mL/min
- 柱箱温度：30℃
- 进样体积：25μL
- 检测方式：抑制型电导，ASRS 300 4mm，自循环模式

样品：1. 白酒样品；
2. 白酒样品加标5mg/L

图1-31. 白酒样品及加标对比谱图

5. 烟草中的有机酸

烟草中甲、乙、丙、丁酸的检测方法传统为气相方法，该方法需要衍生，操作比较麻烦。且这几种有机酸出峰与系统峰较近，对于实际样品很容易存在干扰，准确定量存在一定问题。离子色谱法分离有机酸具有较好的分离度，操作简单。烟叶样品提取液中有较深的色素可选用石墨化碳黑柱除去烟草样品中的色素，当标准溶液中存在2mmol/L氯氧化钠时，甲、乙、丙、丁酸的回收率都能达到95%以上。石墨化炭黑柱可以进行简单处理再生后重复使用。某烤烟样品中有机酸的分离谱图如图1-32所示。

- 分析柱：IonPac AS11-HC 分离柱(4 × 250mm)与 IonPac AG 11-HC 保护柱(4 × 50mm)
- 淋洗液（EG产生）：0-20 min，0.8 mmol/L；20.1-25 min，50 mmol/L；25.1-30 min，0.8 mmol/L
- 流速：1.00 mL/min
- 柱箱温度：30℃
- 进样体积：25μL
- 检测方式：抑制型电导，ASRS 300 4mm，自循环模式

样品：1. 烤烟样品；
2. 烤烟样品加标5mg/L

图1-32. 烤烟样品及加标对比谱图
6. 蔓越橘中的有机酸

奎宁酸是蔓越橘果汁的重要标志，且成为其是否纯正的衡量标准。用离子排斥色谱法与抑制型电导检测器对其中有机酸的分离与检测是测定奎宁酸以及其它主要有机酸的一种快速方法，如图1-33所示。

- 柱：IonPac ICE-AS6
- 滤洗液：0.4 mM 全氟丁酸
- 流速：1.0 mL/min
- 进样体积：50 μL
- 检测方式：抑制型电导，AMMS-ICE

7. 番茄产品、牛奶和咖啡的有机酸

由于使用离子排斥方法，常规无机阴离子在柱上基本没有保留，故而没有高浓度盐的干扰，食品分析如番茄产品的分析变得非常简单，氯化物等其他无机阴离子从柱空隙中被洗脱，只需要对样品进行稀释和过滤即可。如图1-34（A）和图1-34（B），分别为番茄汁和番茄酱的有机酸测定谱图。另外，诸如牛奶和咖啡等基体复杂的样品，经过简单前处理之后，也可以使用离子排斥法测定其中的有机酸成分，见图1-34（C）和图1-34（D）。

- 柱：IonPac ICE-AS6
- 滤洗液：0.4 mM 全氟丁酸
- 流速：1.0 mL/min
- 进样体积：50 μL
- 检测方式：抑制型电导，AMMS-ICE
三、胺与其它有机碱

由于致癌物质亚硝胺可由胺转化而来，且胺类也是食品变质的一个指标，因此食品与饮料中胺的检测显得越来越重要。

1. 常见阳离子、甲胺和与乙胺同时分析

有机胺类物质是仅次于有机硫化合物的致癌污染物，其主要成分是三甲胺、甲胺、乙胺、丙胺、二乙胺、正丁胺等。其中低分子量的亚硝胺，如三甲基胺与二甲基胺是鱼类与其它一些食品质量的标志。通过调整柱的选择性，低分子量的胺与无机阳离子可同时检测，如图1-35所示。

- 柱：IonPac CS18 (2 mm)
- 淋洗液：MAA 梯度
- 淋洗液源：EGC II MSA 罐
- 流速：0.3 mL/min
- 温度：35 ℃
- 进样体积：5 μL
- 检测方式：抑制型电导，CSRS ULTRA II 2-mm

![图1-35. 低分子量的胺与无机阳离子同时分离谱图](image)

2. 生物胺与常规阳离子的精密分析

如图1-36和图1-37所示，使用CS17分离柱和CS18分离柱均可同时完成生物胺和常规阳离子的分析，从而实现生物胺和常规阳离子的精密分析。

- 柱：IonPac CG17，CS17，2 mm
- 进样体积：25 μL
- 淋洗液：MAA 梯度
- 流速：0.40 mL/min
- 温度：40 ℃
- 抑制剂：CSRS 型抑制器，2 mm，自循环模式，100 mA

![图1-36. CS17色谱柱同时分离生物胺和常规阳离子的谱图](image)

- 色谱柱：IonPac CS18，2 mm
- 淋洗液：MAA 多步梯度
- 流速：0.25 mL/min
- 温度：40 ℃
- 进样体积：5 μL
- 检测：抑制型电导，CSRS 型抑制器 2 mm，自循环模式

![图1-37. CS18色谱柱同时分离甲胺、生物胺和常规阳离子的谱图](image)
3. 产品变质的指标物—生物胺

生物胺是一类含氮的脂肪族或杂环类低相对分子质量有机化合物，存在于包括水产品、蔬菜、啤酒、肉类、蛋类、奶酪、巧克力、大豆制品、葡萄酒、啤酒和其它发酵食品等在内的多种食品中。适量摄入生物胺能够有效调节机体内在的生理活动，但过度摄入会使人产生不良反应，出现如头痛、恶心、血压升高、心悸等一系列不良症状，严重的还可能危及生命。因此开发一种能同时检测10种常见生物胺含量的方法十分必要，使用戴安最新开发的CS18分配柱，可以较好地完成分析，图1-38（A）和图1-38（B）分别为使用积分脉冲安培检测器和抑制型电导检测器检测的谱图。

- 柱：IonPac CG18，CS18, 2 mm
- 溶液：MSA 梯度
- 溶液源：EGC-MSA
- 温度：40℃
- 流速：0.30 mL/min
- 进样体积：5 μL
- 检测方式：A. 脉冲积分安培
- B. 抑制型电导，CSRS型抑制器，2 mm，外接水模式
- 柱后试剂：0.1 M NaOH；PCR
- 流速：0.24 mL/min

4. 鱼类产品中的生物胺

鱼类中的生物胺是海产品变质的指标物。虽然高效液相色谱法已经发展起来，但由于缺乏合适的生色团，分析生物胺一般要用衍生技术。一种改进的分析方法——配有积分脉冲安培检测器的离子色谱，可直接检测μg/L级的生物胺而无需衍生技术。图1-39（A）是从变质的青鱼罐头提出的生物胺的色谱图，图1-39（B）则是加入各种胺标（300 μg/g）的色谱图。

- 柱：IonPac® CG10, CS10
- 溶液：(A) 乙腈-水90:10 (v/v)
- (B) 0.5 M 高氯酸
- (C) 1M 高氯酸钠
- (D) 水
- 流动相：时间（min）%A %B %C %D
 0.0 5 10 60 25
 1.0 5 10 60 25
 10.0 5 10 85 0
 25.0 5 10 85 0
 26.0 5 10 60 25
- 流速：1.0 mL/min
- 检测方式：积分脉冲安培

图1-38. 使用脉冲积分安培检测器和抑制型电导检测器检测生物胺的谱图

图1-39. 变质的青鱼罐头样品加标前后生物胺的分离谱图
5. 干酪中的生物胺

干酪是由牛奶经发酵制成的一种营养价值很高的食品，内含丰富的蛋白质、乳脂肪、无机盐和维他命及其他微量元素等，对人体健康大有好处。但是由于干酪处于发酵过程中，所以时间太长了也会变质。干酪中生物胺含量的评价对消费者而言是关注其健康危害所必须的，更进一步，生物胺含量的高低也可以作为评价干酪生产原乳和加工环境卫生状况的有用标准之一。图1-40分别为新鲜的和腐败的瑞士干酪样品中生物胺的分离谱图，可见腐败的奶酪中生物胺含量会明显增加，而摄入过量生物胺则极易引起中毒。

- 色谱柱：IonPac® CG18，CS18，2 mm
- 淋洗液：MSA梯度
- 淋洗液源：EGC-MSA
- 温度：40℃
- 流速：0.30 mL/min
- 进样体积：5 μL
- 检测方式：脉冲积分安培
- 柱后试剂：0.1 M NaOH
- PCR流速：0.24 mL/min

6. 啤酒中的生物胺

啤酒中生物胺的含量与啤酒酿造和贮藏过程中的卫生条件密切相关。麦芽汁通过氨基酸脱羧酶作用，在发酵过程中一旦有乳酸菌或野生酵母混入，将导致其发酵异常，并伴有酸和胺的产生。这一现象已被用作判定啤酒发酵是否受到微生物污染的依据。因此，啤酒中的生物胺分析具有十分重要的意义，图1-41为小麦啤酒中的生物胺分离谱图。

- 色谱柱：IonPac® CG18，CS18，2 mm
- 淋洗液：MSA梯度
- 淋洗液源：EGC-MSA
- 温度：40℃
- 流速：0.30 mL/min
- 进样体积：5 μL
- 检测方式：抑制型电导，CSRS型抑制器，2 mm，外接水模块

7. 奶粉中的有机阳离子，胆碱，乙酰胆碱以及乌拉胆碱

胆碱在心血管和肝健康中发挥着重要作用，可以帮助改善记忆，增强体能。牛奶、鸡蛋、器官和其他肉类中含有许多胆碱，而谷类、水果和蔬菜中胆碱含量很少。图1-42(A) 是采用UV检测器，硅胶反相HPLC离子对分离法对胆碱的分离。从排除基体干扰与有利于分析的角度来看，阳离子交换柱与抑制型电导检测器显示了更为优良的特性，它们分离胆碱、乙酰胆碱得到的色谱图如图1-42(B) 所示，同A比较，B中的胆碱与乙酰胆碱的顺序颠倒过来且Na⁺与K⁺同时被检测出。
(A)柱：C-18
- 淋洗液：5 mM 焦炭硫酸，pH 4.0/1% 乙腈
- 检测方式：UV，190 nm

(B)柱：OmniPac PCX-100
- 流动相：75 Mm HCl，1%甲醇
- 试样体积：10 mL
- 流速：1.0 mL/min
- 抑制剂：CMMS型抑制剂
- 再生液：100 mM TBAOH
- 再生液流量：5 mL/min
- 检测方式：抑制型电导

由于胆碱对人体正常的新陈代谢起着重要的作用，因此它经常被加入到婴儿食品、维生素配方和运动饮料中。图1-43为婴儿配方奶粉中胆碱与常规阳离子的分离谱图。

样品前处理步骤：准确称取5 g奶粉样品于50 mL具塞玻璃锥形瓶中，加入30 mL 1 mol/L盐酸，加盖，混匀。将锥形瓶放入70℃水浴3小时，每小时摇一次。将水解产物冷却至室温，用滤纸过滤并收集在100 mL容量瓶中，用水冲洗锥形瓶，所得溶液过滤至容量瓶中。将滤液定容至100 mL，此滤液可以在4℃下保存三天。分析前用水继续稀释此滤液20倍后，过0.22 μm尼龙滤膜进样（参考戴安应用文献AN124）。

胆碱经阳离子交换色谱柱分离后，可采用抑制电导和非抑制电导（图1-44）两种方法进行测定。抑制电导法测定胆碱，基线更加平稳，基线噪音更低；从而检测灵敏度比非抑制法有很大提高。并且在抑制电导法条件下，能够更好的分离其他五种常见阳离子，实现同时测定。

- 色谱柱：IonPac CS12A +CG12A
- 淋洗液：MHA 18 mM
- 淋洗液流速：1.0ml/min
- 抑制剂：CSRS 300 4mm
- 抑制电流：54mA
- 进样量：200 μL

- 色谱柱：IonPac CS17+ CG17
- 淋洗液：MSA 6 mM
- 淋洗液流速：1.0ml/min
- 进样量：200 μL
四、碳水化合物

碳水化合物是许多食品和饮料的重要成分，经常要因各种原因进行检测，例如对食品标签规定的监督，果汁质量及是否掺假的判断。酒精饮料发酵过程的监测与控制，填充剂、甜味剂和脂肪替代物的分析等，都要对碳水化合物进行分析。

配有氯丙基键合硅胶柱或聚合物基质键合金属阳离子交换树脂柱、折光检测器或低波长UV检测器的高效液相色谱，是检测常见糖类的简单的等度淋洗的分析方法。但这种方法由于糖的糖醇和有机酸中分离不充分，缺乏特异检测，灵敏度不足等问题，不能满足某些应用的要求，改进糖的分析方法已被关注。因此规定食品中总糖的含量必需在标签中注明后，糖类的分析方法显得尤为重要，氯化钠的干扰、乙腈的使用等作为附带的问题被提出。

在高pH条件下，使用配有脉冲安培检测器（HPAE-PAD）和高效阴离子交换柱的离子色谱使上述问题得到解决。糖类、糖醇及寡糖、聚糖等可以在一次进样后得到高分辨的分离而无需衍生，并且可以定量到皮摩尔（10^{-12} mol）水平。该技术已广泛应用于常规检测和研究中，且该方法得到国际标准组织及其它官方机构的认同。醇类、二醇及醛类也可以使用该技术检测。糖醇、单糖、双糖、低聚糖和多糖的检测均使用脉冲安培检测器，全工作电极，以四电位波形检测。

1.糖醇与单糖、双糖的检测

美国目前不要求在食品标签中必须把各种糖醇都列出，但与糖类一样，要求列出总糖醇的含量，因此少量的糖醇也必须检出。目前分析糖醇的气相色谱法已得到发展，但由于需要衍生技术，该方法显得较为复杂，目前唯一官方的方法是AOAC973.28，一种分析山梨糖醇的气相色谱法。在此展示另一种简单、直接且不需衍生的方法。在这种方法中，选择柱子使糖醇成为一组，并在糖类之前淋洗出来，且在一次进样中就可将糖类与糖醇定量检测出。

1.1 硬糖果与口香糖中的糖醇(Dionex AN 87)

由于没有生酮性，糖醇作为诸如口香糖等食品的新兴产业味剂迅速发展起来。在这种情况下，食品中糖醇的检测必须建立标准的方法以满足法规管理的要求。在此列出硬糖果与口香糖中糖醇测定的简单方法。在硬糖中，山梨糖醇与甘露糖醇的检测不受干扰，较容易测定，样品制备只需溶解与稀释（图1-45(A)）。图1-45(B)是口香糖中甘油、山梨糖醇、甘露糖醇与葡萄糖的检测，样品制备包括用去离子水超声处理，再经预处理后用0.45 μm的滤膜过滤。使用CarboPac MA1分析柱（4 mm × 250 mm）和保护柱，以500 mM NaOH淋洗液等度淋洗（流速为0.4 mL/min）。

图1-45. 硬糖果和口香糖中糖醇的测定
1.2 甜味剂中的糖醇分析（图1-46）

- 色谱柱：CarboPac MA1分析柱（4mm × 250mm）
 和保护柱

1.3 糖与糖醇的同时测定（无糖食品、发酵液）

随着人们生活水平的提高和消费意识逐渐增强，食品安全和健康受到世界各国的广泛关注。新兴的无糖食品受到了广大消费者的欢迎，按照国际惯例，无糖食品是指含蔗糖（和淀粉糖）而必须含有作为糖醇替代品的糖醇的一类食品。目前国内无糖食品尚无相应国家标准或行业标准可以依托，从而造成无糖食品市场混乱，也因无法可依而致使无糖食品的推广极为困难。建立了同时分析无糖食品中的糖醇、单糖和双糖的高效阴离子交换色谱—积分脉冲安培法色谱方法，能可靠地测定常见无糖食品中的丙二醇、肌醇、甘油、木糖醇、山梨醇、甘露醇、半乳糖醇、葡萄糖、果糖、蔗糖和麦芽糖，同时也可用于低糖食品的分析。图1-47为无糖饮料中糖和糖醇的分离谱图。

- 分析柱：CarboPac MA1 分离柱(4× 250mm)与
 CarboPac MA1保护柱(4 × 50mm)
- 淋洗液：480 mmol/L 氢氧化钠
- 流速：0.40 mL/min
- 柱箱温度：30 ℃
- 进样体积：10 ~25 μL
- 检测方式：Au电极，AgCl参比模式，脉冲安培
 检测，糖四电位波形

发酵是人类较早接触的一种生物化学反应，如今在食品工业、生物和化学工业中均有广泛应用。液体培养基常被用于发酵水和糖类、蛋白质、氨基酸和脂肪等有机物的合成，而糖是糖醇主要来源。发酵液是由各种糖类、蛋白质、氨基酸和脂肪等有机物组成的混合物，因而成分极其复杂。这些成分中的很大一部分不能直接通过吸收法来检测，但糖类、醇类、二元醇类、胺类和含氮化合物都能被氧化从而可以通过安培法检测，而且安培检测法往往具有比示差折光检测器高数百倍的灵敏度。这种检测方法对选择这些大分子的分析物具有独特的选择性，而其他化合物则不被检测。再加之高效阴离子交换色谱技术所具有的高分辨能力，这使得糖醇（包括糖醇）、二元醇和其他醇类（如甲醇和乙醇）的测定成为可能，而其他发酵成分干扰很少。图1-48为发酵液中糖和糖醇的分离谱图。
1.4 苹果汁中的糖（图1-49）
- 色谱柱：CarboPac MA1（4mm×250mm）
- 溶液液：500 mM NaOH
- 流速：0.4 mL/min

图1-49. 苹果汁中糖的分离谱图

1.5 速溶咖啡中的糖（图1-50）
- 色谱柱：CarboPac PA1
- 溶液液：150 mM NaOH/水梯度
- 检测器：脉冲安培检测，金电极，柱后加入0.3 M NaOH
- 样品前处理：用OnGuard II P固相萃取小柱除去Phenolics

图1-50. 速溶咖啡中糖的分离谱图

1.6 蜂花粉及王浆中的葡萄糖、果糖、蔗糖和麦芽糖

蜂王浆、蜂花粉和蜂蜜一样，均富含氨基酸、糖类、蛋白质、维生素、生物酶、矿物质和微量元素等对人体有益的营养成分，被称为人们最理想的健康食品之一。与蜂蜜相似，蜂王浆和蜂花粉也含有高含量的葡萄糖和果糖，但是蔗糖的含量则约为葡萄糖的十分之一，而麦芽糖的含量则更低至百分之一。由于示差检测器对蔗糖和麦芽糖检测的灵敏度很低，因此根本无法满足蜂花粉和王浆的测定要求。脉冲安培检测代谢糖和蔗糖则具有极高的灵敏度，常可检测到μg/L级，因而借助离子色谱法则可解决蜂花粉和蜂王浆中葡萄糖、果糖、蔗糖和麦芽糖同时检测的难题。

蜂王浆和蜂花粉样品测定时的另一独特性在于需要选择合适的样品前处理步骤，因为它们均含有多种生物酶。若处理不当，样品中的蔗糖等非单糖可能被降解。通过实验发现，以热水溶解样品并立刻用乙腈沉淀蛋白可保证测定结果的准确性和数天内的稳定性。再辅以OnGuard II RP和OnGuard II H柱去除提取后样品中残存的一些污染干扰物，从而较好完成各类蜂花粉和王浆样品的分析。图1-51分别为蜂花粉及蜂王浆中糖的分离谱图。

- 分析柱：CarboPac PA10 分离柱(4×250mm)与CarboPac PA10+IonPac NG1保护柱(4×50mm)
- 溶液液（手工配制）：0-9min，40 mM NaOH
9-16 min，40 mM NaOH，0-40 mM NaOAc
16-22 min，40 mM NaOH，40-100 mM NaOAc
22-26min，40 mM NaOH/100 mM NaOAc
26.1-28.0 min，200 mM NaOH
28.1-32 min，40 mM NaOH

图1-51. 蜂花粉（a）和王浆（b）样品及加标对比谱图
—流速：1.00 mL/min
—柱箱温度：30 ℃
—进样体积：10 µL
—检测方式：Au电极，AgCl参比模式，脉冲安培
检测，糖四电位波形

峰：1. 葡萄糖 2. 果糖
3. 蔗糖 4. 麦芽糖

1.7 糕点中的糖（GB/T 23780-2009）

国家预包装特殊膳食食用食品标签通则中规定，固态和液态食品中糖(指主要单糖、双糖)的含量低于0.5 g/100g(100 mL)才能标注为无糖。因为缺乏一套快速准确的测定方法鉴别无糖真伪，不少糕点生产企业借助无糖和低糖宣传促销，导致无糖和低糖市场混乱并且容易误导消费者。

通常食品中糖的分析方法有化学法、毛细管电泳法、高效液相色谱法等。化学法检测还原糖选择性较差，结果准确性有待商榷。毛细管电泳法需要借助于衍生步骤，而高效液相色谱法虽无需衍生，但示差检测器的灵敏度不高，仅限于常量组分的分析。糖类化合物在强酸溶液中呈离子化状态，因此可以采用高效阴离子交换色谱进行分离。而强酸性条件下，糖类在电泳板表面可发生酸化反应，因而可以通过安培检测器直接检测。《GB/T 23780-2009糕点质量检验方法》中采用高效阴离子交换色谱-脉冲积分安培检测法测定了糕点中的水溶性半乳糖、葡萄糖、木糖、果糖、蔗糖、乳糖和麦芽糖，如图1-52所示。方法采用水浸提、脱脂、去蛋白及酶过滤法处理糕点样品，再以CarboPac PA10型阴离子交换柱分离，梯度淋洗，脉冲积分安培检测各种糕点样品中单、双糖组成[8]。该方法具有灵敏度高、分离效果好、重现性好、样品不需要衍生处理和同时测定多组分的优点，在食品工业领域将会有更广泛的应用。

—分析柱：CarboPac PA10 分离柱(4 × 250mm)与CarboPac PA10保护柱(4 × 50mm)
—淋洗液（手工配制）：NaOH/NaOAc梯度淋洗
—流速：1.00 mL/min
—柱箱温度：30 ℃
—进样体积：25 µL
—检测方式：Au电极，AgCl参比模式，脉冲安培
检测，糖四电位波形

2. 单糖和糖醛酸的同时分析

2.1 柑橘果胶中的低聚糖醛酸（oligouronides）

果胶多年来用于果酱或果冻等食品的增稠和凝胶，不过这新的用途已被发掘。一种由柑橘中抽取的由部分甲基半乳糖醛酸构成的果胶可用作脂肪替代物。不同来源的果胶具有不同特征的聚半乳糖醛酸指纹峰，这可用来鉴别和控制产品质量。如图1-53所示，从柑橘果胶中得到的典型半乳糖醛酸可在40分钟内检测，样品制备只需直接注射稀释的果胶水解产物。

—色谱柱：CarboPac PA1色谱柱（4 mm × 250 mm）
—淋洗液：NaOH/NaOAc梯度淋洗
—分析物：柑橘果胶中的低聚糖醛酸

图1-52. 某糕点样品的离子色谱图

图1-53. 柑橘果胶中的低聚半乳糖醛酸

27
2.2 烟草中的果胶（半乳糖醛酸，YC/T 346-2010）

果胶是烟草中含量较大的一类重要成分，若其含量过高时会使烟草在燃烧时燃烧不完全，对烟草吸味有负面影响，同时果胶在分解时还产生有毒物质甲醇，对卷烟的安全性不利。与此同时果胶又对烟草保湿能力和柔韧性有重要作用，因此果胶含量已成为烟草品质评价的重要指标，准确测定烟叶中的果胶含量对于烟草品质有着重要的意义。

果胶是一种聚半乳糖醛酸，常见方法往往将其水解为半乳糖醛酸再进行测定。但常见测定半乳糖醛酸的方法中，气相色谱法需衍生，高效液相色谱法采用示差折光检测器的灵敏度低。离子色谱法采用CarboPac系列阴离子交换色谱柱分离半乳糖醛酸，安培检测器电极检测，方法选择性好，灵敏度更高。《YC/T 346-2010烟草及烟草制品 果胶的测定 离子色谱法》中具体样品处理时应采用乙醇除去烟草或烟草制品中的常见单、双糖等干扰物质，再经酸化后使用果胶酶将果胶水解成半乳糖醛酸，再通过离子色谱系统测定半乳糖醛酸。烟草样品中的果胶含量以半乳糖醛酸含量计。图1-54为烟草样品水解液的分离谱图。

- 分析柱：CarboPac PA10分离柱(2×250mm)与CarboPac PA10保护柱(2×50mm)
- 湿洗液：150 mmol/L NaOH/150 mmol/L NaOAc，等度淋洗
- 流速：0.25 mL/min
- 柱箱温度：30 ℃
- 进样体积：25 μL
- 检测方式：Au电极，AgCl参比模式，脉冲安培检测，糖四电位波形

图1-54. 烟草样品水解液的色谱图

3. 糖胺类物质的检测

3.1 葡萄糖胺和N-乙酰葡萄糖胺

氨基葡萄糖是关节软骨中蛋白多糖的组成成分，具有改善骨关节炎症状，促进关节软骨代谢等作用，对于修复关节软骨十分有效。常用的氨基葡萄糖类物质有硫酸氨基葡萄糖、盐酸氨基葡萄糖、N-乙酰氨基葡萄糖以及它们与其它组分的复合物。离子色谱法配合脉冲安培检测器提供了测定此类物质的高分离度和高灵敏度解决方案，常见可能共存的蔗糖和乳糖不干扰测定。图1-55为氨基葡萄糖与葡萄糖、蔗糖、乳糖等的分离谱图。

- 分析柱：CarboPac PA20 分离柱(3×150mm)与CarboPac PA20 保护柱(3×30mm)
- 湿洗液（手工配制）：0-16 min，35 mmol/L NaOH；16.1-19 min，200 mmol/L NaOAc；19.1-25 min，35 mmol/L NaOH
- 流速：0.40 mL/min
- 柱箱温度：30 ℃
- 进样体积：25 μL
- 检测方式：Au电极，AgCl参比模式，脉冲安培检测，糖四电位波形

图1-55. 氨基葡萄糖、N-乙酰氨基葡萄糖、葡萄糖、蔗糖和乳糖分离谱图
4. 其它糖系衍生物的检测

4.1 氯化蔗糖衍生物（三氯蔗糖）

氯化蔗糖衍生物是一种比蔗糖甜400-800倍的高强度甜味剂，它由蔗糖选择性氯化制得。1991年9月加拿大批准其在各种食品和饮料中使用，但在其它国家，包括美国和英国，该产品是否允许使用还在考虑之中。用HPAEC-PAD方法对其检测时，氯化蔗糖衍生物的样品有微量的不纯物，如图1-56和图1-57所示。

- 色谱柱：CarboPac PA20（3mm×150mm）
 - 带保护柱
- 淋洗液：40 mM NaOH/75 mM NaAc
- 温度：30℃
- 流速：0.5 mL/min，10-g/L溶液

![图1-56. CarboPac PA20柱分离氯化蔗糖及其杂质的谱图](image)

- 进样体积：25 μL
- 色谱柱：CarboPac MA1（4mm×250mm）
- 淋洗液：150mM NaAc，用0.2%乙酸调节pH为5.5
- 流速：0.4mL/min

![图1-57. CarboPac MA1柱分离氯化蔗糖及其杂质的谱图](image)

5. 低聚糖和多糖的检测

5.1 啤酒酿造过程中的糖与聚糖图谱

在啤酒酿造的每一步骤中，对可发酵和不可发酵的糖的水平的确定都是至关重要的，这是因为可发酵的糖决定了酵的最终含量，不可发酵的糖则构成最终产品的风味和“主体”。如图所示，所有啤酒、葡萄酒、苹果酒中的糖类、糖醇、乙醇、乙二醇等都可以高分辨地快速检测。

图1-58（A）为低聚麦芽糖的分离图谱，从图可见，聚合度到10的低聚麦芽糖可达到基线分离。图1-58（B）、（C）、（D）表示在酿造过程的每一步中，糖类、聚糖分布。所有样品都稀释10倍。另外低聚糖的检测还可用来对比区分普通啤酒与低热量啤酒。
5.2 菊粉

从菊苣根或朝鲜蓟中得到的菊粉类产品可作为食品的脂肪替代物和使食品成型的食品纤维添加剂。菊粉由结合了少许葡萄糖单元的线性低聚果糖混合而成，其聚合度根据最终用途而定，因此为了保证最终产品质量，测定其链长分布很关键。图1-59链长分布检测表明其聚合度为50或更高。

- 色谱柱：CarboPac PA100分析柱（4mm × 250mm）
- 淋洗液：100 mM NaOH，NaAc梯度淋洗
- 流速：1.0 mL/min

样品：0.3%水洗菊粉于0.1 M NaOH中
5.3 麦芽糊精

许多商业低热量甜味剂、填充剂与脂肪替代物都是从各种淀粉中得到的聚糖或多聚物。检测产品中聚糖链长是非常重要的，因为聚糖的链长对产品的功效有直接地影响。HPAE-PAD是该检测的首选方法，因为其分析方法不能分离高聚合度的聚糖链。图中所示是从玉米淀粉中分离出的两种不同链长度分布的麦芽糖糊精的谱图。

Maltrin®M040，被用来提高成膜性以增加结构的光滑性，Maltrin®MO700则用来制作成具有非常好的溶解特性的低密度的颗粒。具有两种不同的物理特性的麦芽糖糊精可用不同链长分布的图谱（图1-60（A）和（B））清楚地表现出来。

- 色谱柱：CarboPac PA10
- 淋洗液：NaOH/NaAc 梯度淋洗
- 进样体积：25 μL
- 流速：1mL/min

![图1-60. 麦芽糊精Maltrin®M040和M700的谱图](attachment:image1.png)

5.4 支链淀粉

不同来源的淀粉由于化学结构排列的不同而具有不同的功能特性，了解分子结构和功能特性之间的关系对基础研究和选择开发配方食品的淀粉类添加物非常重要。对直链和支链淀粉，链长分布是一个非常重要的特性参数，图1-61所示为聚合度达60的不同来源的支链淀粉的全部链长信息。

- 色谱柱：CarboPac PA1色谱柱（4 mm × 250 mm）
- 淋洗液：NaOH/NaAc梯度淋洗，流速为0.4 mL/min
- 样品：大米、玉米、甜马铃薯、可食糕的提取液

![图1-61. 不同来源的支链淀粉的分离谱图](attachment:image2.png)
5.5 酵母细胞壁中的甘露寡糖和葡聚糖

酵母细胞壁是一种很有发展前景的新型添加剂，主要成分是葡聚糖、甘露寡糖、糖蛋白和几丁质，其具有抗氧化和益生素双重功效。其中两种低聚糖的含量成为评价酵母细胞壁品质好坏的一个衡量标准。目前常见的低聚糖直接测定方法主要有比色法和酶法，比色法无选择性，而酶法则专一性太强。而另一种测定思路则是将低聚糖通过水解得到相应单糖后再进行检测，最终换算得到相应低聚糖含量。气相色谱法和毛细管电泳法需衍生，而高效液相色谱法虽无需衍生，但方法的灵敏度很低。离子色谱-积分脉冲安培检测法是近年发展迅速的新方法，无需衍生，且具有极高的灵敏度，通常可以检测到pmol级的糖类物质，因而受到科研单位和检测机构越来越多的重视。本方法介绍了一种测定酵母细胞壁样品中β-葡萄糖和甘露寡糖的方法，以硫酸水解得到相应单糖后经离子色谱柱CarboPac PA10分离和积分脉冲安培法检测，最终得到样品中这两种低聚糖的含量。如图1-62所示，样品水解后的单糖与糖醇等可以得到很好的分离。

- 分析柱：CarboPac PA10 分离柱(4×250mm)与 CarboPac PA10保护柱(4×50mm)
- 淋洗液（手工配制）: 0-20 min，15 mM NaOH；20.1-25 min，200 mM NaOH；25.1-30 min，15 mM NaOH
- 流速：1.00 mL/min
- 柱箱温度：30 ℃
- 进样体积：25 μL
- 检测方式：Au电极，AgCl参比模式，脉冲安培检测，糖四电位波形

样品：酵母细胞壁粉

5.6 水解葡萄糖糖浆中的寡糖与聚糖

图1-63对比说明HPAE-PAD技术对水解葡萄糖浆明显的分辨能力。使用CarboPac PA1柱，组分的洗脱顺序与常用的金属键合阳离子交换柱洗脱顺序相反，低聚合度的同系物先淋洗出来，聚合度高的同系物保留时间长，而在金属键合的阳离子交换柱上，聚合度大的同系物保留时间短，在色谱图的起始处分不开。

图1-62. 酵母细胞壁样品水解后分离谱图

图1-63. 使用不同类型色谱柱分离水解葡萄糖浆中寡糖与聚糖的谱图
5.7 饮料与甜味剂中的低聚糖图谱（AN82）

聚糖组分检测是鉴定天然果胶是否掺假的强有力的分析技术，一些天然果胶有可能掺如其它的糖，例如甜菜糖、糖蜜或其它的具有地方特色的甜味剂。

聚糖图谱可以快速得到。右图所示为纯桔汁图1-64（A）与添加20%的甜菜转换糖的桔汁图1-64（B）的色谱图的比较。同样，由于色谱图的不同，英国甜菜糖和美国甜菜糖也可很容易的区分开来。

- 色谱柱：CarboPac PA100分析柱（4mm × 250mm）
- 液流柱：100mM NaOH，NaAc缓冲柱
- 流速：1.0mL/min

图1-64. 纯桔汁与添加20%的甜菜转换糖的桔汁的色谱图的比较

5.8 甜菜原产地图谱的建立

对建立碳水化合物食品中具有复杂成分的糖浆的原产地图谱来说，寡糖的图谱是非常有用的工具，右图是来自英国（图1-65（A））和来自美国（图1-65（B））的甜菜中的糖和寡糖的不同图谱。

- 色谱柱：CarboPac PA分析柱（4mm × 250mm）和保护柱
- 液流柱：100mM NaOH/20mM NaAc等度淋洗，流速为1.0mL/min
- 检测器：脉冲安培检测器，Au电极，四电位波形检测

图1-65. 来自英国（A）和美国（B）的甜菜中的糖和寡糖的不同图谱
5.9 食品中的葡萄糖（AOAC 2000.11）

葡萄糖是一种合成的葡萄糖聚合物，平均聚合度为12。它是一种对人体有益的膳食纤维，已有的检测膳食纤维的方法不能用来检测葡萄糖。AOAC 2000.11方法使用离子色谱-脉冲安培检测法（HPAECPAD）很好的解决了这一问题，它可以测定食品中的葡萄糖。在该方法中，使用了离位波形。但经过数年实验结果比较，使用四电位波形能获得更好的结果重现性与更长的电极寿命。图1-66为牛奶巧克力糖中的葡萄糖分离谱图。

- 色谱柱：CarboPac PA1分析柱+保护柱
- 梯度：0-12min, 150mmol/L NaOH/150mmol/L NaAc；
 12.1-17min, 150mmol/L NaOH/500mmol/L NaAc；
 17.1-25min, 150mmol/L NaOH/150mmol/L NaAc
- 柱温：30℃
- 流速：1.2mL/min
- 电极：Au工作电极
- 波形：标准糖-四电位波形
- 进样体积：25μL

图1-66. 牛奶巧克力糖中的葡萄糖

5.10 食品中的果聚糖（AOAC 997.08）

果聚糖是一种功能性食品添加剂，广泛应用于奶酪、巧克力、果汁、蔬菜制品等常见食品中。AOAC 997.08方法使用高效阴离子交换分离色谱（HPAECPAD）测定食品中含有的果聚糖。果聚糖用沸水从食品中提取，提取液加淀粉葡萄糖苷酶水解。水解液的一部分用菊粉酶水解，测定释放出的糖。初始样品和第一次、第二次水解的样品使用带有脉冲安培检测器的高效阴阳离子交换分离色谱（HPAECPAD）测定。根据三次测定结果，可计算出果聚糖的含量。

测定使用保护柱Carbopac PA1 (250 x 4mm)及保护柱。柱温为40±0.5℃；流速为1.0mL/min；进样体积为50μL。淋洗液A为10mmol/L氢氧化钠溶液，淋洗液B为10mmol/L氢氧化钠溶液。淋洗液梯度如下：

梯度淋洗条件

<table>
<thead>
<tr>
<th>时间（min）</th>
<th>淋洗液A（%）</th>
<th>淋洗液B（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>69</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>83</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
5.11 食品中的反式低聚半乳糖（AOAC 2001.02）

反式低聚半乳糖（TGOS）为可溶的半乳聚糖，是膳食纤维的一种。使用热磷酸盐缓冲液提取食品中的TGOS和乳糖，提取液用半乳糖苷酶水解成半乳糖。HPAEC-PAD可以快速准确的测定水解产生的半乳糖和乳糖，从乳糖和半乳糖的浓度计算TGOS含量。此方法已被AOAC 2001.02收载。图1-67为柠檬汁中低聚半乳糖水解后得到的分离谱图。

- 色谱柱：CarboPac PA1分析柱+保护柱
- 淋洗液：A.12.5 mM NaOH
 B.125 mM NaOH
 C. 125 mM NaOH/500 mM NaAc
- 梯度：0-20.1 min, 95%A, 5%B
 35-36 min, 100%B
 36.1-46 min, 100%C
 46.1-61 min, 95%A,5%B
- 流速：1 mL/min
- 柱温：30 ℃
- 电极：Au工作电极
- 波形：糖四电位波形
- 进样体积：25 μL

5.12 烟草及烟制品中的糖(淀粉)（YC/T 283-2009）

淀粉是烟草中重要的化学成分之一，其在燃烧时会产生焦糊气，对卷烟的吸味有不良影响，因而日益受到烟草农业和卷烟生产企业的重视。由于烟草成分复杂，淀粉的分离比较困难，较难准确测定。准确测定烟草中的淀粉含量，对烟草和卷烟制品的质量评价具有较重要的现实意义。利用淀粉水解后可形成葡萄糖这一特性，现有的大部分检测方法都是将淀粉水解为葡萄糖，根据测定得到水解葡萄糖的含量后换算为淀粉含量。相比较其它方法，离子色谱法具有更好的选择性和更高的灵敏度，对于烟草这类复杂样品具有明显优势。烟草行业标准《YC/T 283-2009烟草及卷烟制品 淀粉的测定 酶水解-离子色谱法》中则先采用酶除去烟草中的常见单、双糖类等干扰物质，淀粉多糖则不溶于酶而存在于不溶物中。再利用α-淀粉酶和淀粉葡萄糖苷酶将不溶物中淀粉水解成葡萄糖，通过离子交换柱CarboPac PA20分离，脉冲安培检测器测定水解所得葡萄糖，再最终折合成烟草淀粉的含量。图1-68为烟草中淀粉水解后得到的分离谱图。

- 分析柱：CarboPac PA20 分离柱(3×150mm)与CarboPac PA20 保护柱(3×30mm)
- 淋洗液（手工配制）：NaOH梯度淋洗
- 流速：1.00 mL/min
- 柱箱温度：30 ℃
- 进样体积：25 μL
- 检测方式：Au电极，AgCl参比模式，脉冲安培检测，糖四电位波形

图1-68. 烟草样品淀粉水解后色谱图
5.13 蜂蜜中的淀粉糖浆（GB/T 21533-2008）

近些年蜂蜜掺杂造假在国内蜂蜜行业已成为公开的秘密，从最初的水和蔗糖掺假，到后来的糖浆掺假，掺假技术也随着检测技术的提高而不断提升。对于难以辨别的糖浆掺假，国际上通过同位素法判断不同的植物源，但这方法对甜菜糖浆无法判别，而恰巧我国糖浆的主要来源正是甜菜。《GB/T 21533-2008蜂蜜中淀粉糖浆的测定离子色谱法》主要是解决淀粉糖浆的掺假问题，因为蜂蜜中一般不含5糖以上的低聚糖，而各种淀粉糖浆中均含低聚糖，由此只需检测蜂蜜样品中的低聚糖情况即可判断掺假。由于蜂蜜样品中含有高含量的果糖、葡萄糖和蔗糖，容易干扰到低聚糖测定，因而可使用凝胶体积排阻法去除样品中单、双糖，同时可将寡糖富集。收集液再直接经阴离子交换色谱柱CarboPac PA200进行分离，脉冲安培检测器检测。任一掺入果葡糖浆的蜂蜜样品，在麦芽五糖～麦芽六糖之间和麦芽六糖～麦芽七糖之间会有两个典型的“指纹峰”P1和P2。而若在麦芽五糖～麦芽六糖间、麦芽

六糖～麦芽七糖间以及麦芽七糖之后，有三个典型的“指纹峰簇”P1、P2和P3，则可判断麦芽糖浆掺假。图1-69和1-70为纯蜜中分别添加果葡糖浆和麦芽糖浆后得到的分离谱图。

- 色谱柱：CarboPac PA200+PA200G（3mm）
- 淋洗液：NaOH/NaOAc梯度淋洗（参见国标）
- 流速：0.4mL/min
- 进样体积：25μL
- 检测方式：脉冲安培，Ag电极，糖四电位波形，Ag/AgCl参比电极

峰：
（1）P1，P2指纹峰
（2）P1，P2，P3指纹峰

图1-69. 纯蜜及果葡糖浆添加5%谱图对比

图1-70. 纯蜜及麦芽糖浆添加5%谱图对比
6. 黄酒中氨基酸和糖的同时检测

黄酒中含有多种氨基酸和糖。由于氨基酸和糖影响黄酒的风味、外观和营养，因此，对黄酒中氨基酸和糖的分析在鉴定黄酒质量和控制生产过程中有着重要作用。图1-71为不同品质的黄酒分别进行样的糖和氨基酸的分离谱图。

- 色谱柱：AminoPac PA10分析柱（2mm × 250mm）
- 溶液液：H₂O/NaOH/NaAc稀度淋洗
- 流速：0.25 mL/min
- 检测器：脉冲安培检测器，Au电极，六电位波形检测

参考文献：

1. 潘煐等，小麦粉中溴酸盐测定方法的制定及应用，粮油食品科技，2008, 16(2), 59-63。
2. 李静等，离子色谱法同时分析奶粉中碘离子和硫氰酸根，分析试验室，2010, 29(5): 17-20。
3. 李静等，混合模式色谱柱离子色谱法同时测定奶粉中的碘离子和硫氰酸根，色谱，2010, 28(4): 422-425。
4. 李静等，离子色谱法同时测定食品中的三种甜味剂和两种防腐剂，食品科学，2010，印制中。
5. 侯玉柱，元晓梅，蒋明蔚，等离子色谱法测定糕点中的单、双糖的研究，食品与发酵工业，2009, 35(2):134-137。
6. 唐坤生等，无糖和低糖食品中的糖和糖醇同时分析的阴离子交换色谱-脉冲安培检测法研究，食品科学, 2008, 29(6): 327-331。
第二部分 离子色谱在药物分析中的应用

一．阴离子和有机酸

药品的质量监督在关注健康的现代社会越来越重要。对于含有带电基团的药物例如广泛使用的磺胺类药物，或者含有带电配位基团或辅料的药物例如氢溴酸右美沙芬/盐酸头孢吡肟，离子色谱方法检测是简单可靠的办法。而医药生产的水质检测，生产环境的清洁度，成品的杂质离子含量，则更需要离子色谱。因此，离子色谱在医药企业的应用将不断增加，以补充液相和气相对离子型药物分析的不足。

1. 药物中的阴离子和有机酸

生产环境，生产用水，配位基团，辅料等大多含有常规阴离子，可用阴离子柱进行分析。配位基团常用盐酸（最多），硫酸（第二），硝酸，磷酸，乙酸，甲烷磺酸，氢溴酸，丙酸，马来酸，柠檬酸，含有这些配位基团的药物都可以通过测定配位基团的阴离子而间接定量，如图2-1和图2-2所示。

- 色谱柱：AS11
- 流出液：0-2.5min 0.5mM KOH
 2.5-6min 0.5-5mM KOH
 6-18min 5-38.3mM KOH
- 流速：2.0mL/min

图2-1. 常见阴离子和有机酸的分离

- 色谱柱：AS14柱
- 淋洗液：3.5 mM Na₂CO₃/0.8 mM NaHCO₃
- 流速：1.2mL/min

图2-2. 七种常见阴离子和乙酸的分离
2. 中药材中二氧化硫的测定

1) 中药材中二氧化硫的来源、危害及相关规定

硫磺熏蒸或浸泡是中药材原料的传统加工方法，它能使中药材原药外观光鲜，即使水分严重超标也不会霉变。但这种加工方法会导致中药材原料残留大量的二氧化硫，对人体健康有一定的影响。多国药典对药材中的二氧化硫限量均做出了规定，如韩国规定在266种中药材中，二氧化硫含量不得超过30mg/Kg。中国药典目前未对二氧化硫限量做出规定，但在2010版药典中收录了二氧化硫的测定方法。

2) 二氧化硫的检测方法

二氧化硫检测常用的方法有分光光度法、氧化还原滴定法、酸碱滴定法、离子色谱-电导检测法、离子色谱-安培检测法等。分光光度法易受样品中色素的干扰。滴定法要先将样品蒸馏分离后才能测定，操作较繁琐。离子交换-电导检测法，操作简单，可满足本实验的要求。二氧化硫的提取使用水蒸气蒸馏法，由于亚硫酸根在溶液中不稳定，本方法在吸收液中加入双氧水，将亚硫酸根转化为硫酸根后进行测定。中药材玉竹中亚硫酸根的谱图如图2-3所示。

- 色谱柱：IonPac AS11-HC分析柱+保护柱
- 淋洗液：20mM NaOH溶液
- 流速：1.0mL/min
- 柱温：30℃
- 抑制器：ASRS-连接自动再生膜离子抑制器
- 外接水模式抑制
- 进样量：10μL

图2-3. 中药材玉竹中亚硫酸根检测谱图

3. 肝素钠杂质检测

1）肝素钠中主要存在的杂质及药典规定

肝素是高度硫酸化的糖胺聚糖，含10-30个二糖单位不等。自从1937年肝素在临床上用作抗凝剂以来，肝素一直是一种主要的抗凝药物。肝素钠中含有杂质主要有硫酸皮肤素、多硫酸软骨素等，目前中国药典、美国药典和欧洲药典均对杂质限量做出了规定。离子色谱可分别测定肝素钠中的多硫酸软骨素、硫酸皮肤素含量，及水解后的半乳糖胺含量。图2-4及其分析条件即为2010中国药典及美国药典中肝素钠含量测定方法。

- 色谱柱：IonPac AS11分析柱+保护柱，2mm
- 淋洗液A：0.04% NaH₂PO₄，pH3.0
- 淋洗液B：0.04% NaH₂PO₄/14% NaClO₃，pH3.0
- 二元梯度：0min，80%A；60min，10%A；61-75min，80%A
- 流速：0.22mL/min
- 柱温：30℃
- 进样体积：10μL

图2-4. 肝素钠及杂质测定谱图

样品浓度：肝素钠20mg/mL，硫酸皮肤素和多硫酸软骨素各0.2mg/mL。
肝素钠是由葡萄糖醛酸或艾杜糖醛酸与氨基葡萄糖结合形成的多糖。硫酸皮肤素和多硫酸软骨素分别是葡萄糖醛酸和艾杜糖醛酸与氨基半乳糖结合形成的多糖。所以，鉴别肝素钠中是否含有有机杂质，主要是看肝素钠水解后氨基半乳糖的含量在氨基糖总量中的比例。肝素钠样品前处理步骤如下：称取12 mg肝素钠置于10 mL玻璃管中，加5 mL 5 mol/L盐酸溶解。密闭后在100°C加热样品溶液6小时，冷却至室温，转移溶液于500 mL容量瓶，用水稀释至刻度，过0.22 μm滤膜后进样。图2-5及其分析条件为美国药典中肝素钠中有机杂质含量测定方法。

- 色谱柱：AminoTrap氨基酸捕获柱，50 × 4 mm；
 CarboPac PA20分析柱，150 × 3 mm
- 湿洗液：0-10 min，14 mM NaOH；10.1-15 min，200 mM NaOH；15.1-20 min，14 mM NaOH
- 柱温：30°C
- 流速：0.5 mL/min
- 电极：Au工作电极 pH-Ag-AgCl参比电极
- 波形：标准糖四电位波形
- 进样体积：10μL

4. 帕米膦酸二钠

帕米膦酸二钠注射液(Pamidronate Disodium Injection)为帕米膦酸二钠加适量甘露醇制成的灭菌水溶液。帕米膦酸二钠是一种双膦酸类骨吸收抑制剂，临床上广泛用于治疗骨质疏松症、肿瘤并发的高钙血症和变形性骨炎。

2010版中国药典中帕米膦酸二钠含量测定使用离子色谱法，分离谱图如图2-6所示。分析条件如下：

- 分析柱：IonPac AS22
- 湿洗液：3mM 草酸
- 检测条件：非抑制电导检测

图2-5. 肝素钠中有机杂质-半乳糖胺测定谱图

图2-6. 帕米膦酸标准品谱图
5. 含氢溴酸右美沙芬的止咳糖浆

右美沙芬又称右甲吗喃，为吗啡类左甲吗喃基醚的右旋异构体，通过抑制延髓咳嗽中枢而发挥中枢性镇咳作用，其镇咳作用强于硫酸可待因及咳必清，常用在止咳药和复方感冒药中，无可待因的成瘾性，但滥用可成瘾乃至致命。因为其与氢溴酸配位，所以可以通过溴离子含量得到其含量。图2-7为含氢溴酸右美沙芬的止咳糖浆中阴离子和有机酸的分离图（裁安应用注解AN116）。

- 柱谱柱：AS11
- 淋洗液：0-2.5min 0.5mM KOH, 2.5-6min 0.5-5mM KOH, 6-18min 5-38.3mM KOH
- 流速：2.0mL/min

图2-7 含氢溴酸右美沙芬的止咳糖浆中阴离子和有机酸的分离

6. 复方感冒药

针对多种症状的感冒药含有多种成分，常用的有止咳的氢溴酸右美沙芬或磷酸可待因，解热镇痛的对乙酰氨基酚（扑热息痛），抗菌消炎的乙酰水杨酸（阿司匹林）等成分，其中含配位基团的成分都可以通过离子色谱检测。图2-8为复方感冒药中阴离子和有机酸的分离图（裁安应用注解AN116）。

图2-8. 复方感冒药中阴离子和有机酸的分离

7. 蛋白药物中的三氟乙酸的测定

在蛋白纯化过程通常使用三氟乙酸作为沉淀剂，或者在纯化过程用作淋洗液，或者在合成过程最后洗脱合成的多肽。而这可能导致三氟乙酸最终在成品中残余，而这种残余是非常有害的，因此必须进行检测；另外一种常用的蛋白沉淀剂硫酸铵也需要检测。使用离子色谱是高效高灵敏的检测手段（图2-9）（裁安应用注解AN115）。

- 柱谱柱：AS14
- 淋洗液：3.5 mM Na₂CO₃/0.8 mM NaHCO₃
- 流速：1.2mL/min

图2-9. AS14柱谱分离常见阴离子和三氟乙酸
8. 柠檬酸和磷酸的测定

柠檬酸是一种很常用的辅料，在上面所测试的止咳药和感冒药中都含有。它们在抗酸剂和牙膏中是与碳酸或者碳酸氢盐反应起到起泡剂的作用；在其他很多药物中则起到稳定剂和调味剂的作用。作为缓冲剂和分散剂它们能稳定活性成分，提高抗氧化剂的效果。它们也能作为抗凝血剂用于血液的保存，作为络合剂用于预防结石病。液体制剂中的柠檬酸测定可直接用去离子水稀释，而固体制剂则可在70°C-80°C热去离子水中搅拌30分钟。柠檬酸可以和常见阴离子及其他有机酸同时采用离子交换分离电导法检测，如图2-10所示（戴安应用注解AN164）。

- 色谱柱：AS11
- 溶液液：20mM KOH
- 流速：2.0mL/min

![图2-10. AS11色谱柱分离柠檬酸](image1)

9. 水杨酸的测定

水杨酸又称2-羟基苯甲酸（化妆品通常作作神秘的所谓BHA），最早来源于柳树皮，具有抗菌消炎的作用，可以软化角质层，因此常用于消炎药和护肤品中。它作为重要的医药中间体，用于生产阿司匹林（乙酰水杨酸）、扑热息痛（对乙酰氨基酚乙酰水杨酸酯）等。基于水杨酸的结构特征，其既可以用电导法检测（图2-11（A）），也可以用电导法检测（图2-11（B））（戴安应用注解AN1104）。

- 分析柱：AS11
- 液洗条件：0-2min 10mM KOH 5%乙腈
 2-20min 10-100mM KOH 5%-50%乙腈
- 流速：1.0mL/min
- 检测：抑制电导，外加水模式或UV 214nm检测

![图2-11. AS11分离水杨酸的谱图](image2)
10. 布洛芬（2-(4-异丁基苯基)丙酸）

布洛芬，化学名称2-(4-异丁基苯基)丙酸，是一种治疗类风湿性关节炎的药物。布洛芬制剂中的布洛芬含量的测定一般是用液相色谱法或容量分析法。由于布洛芬是一种有机弱酸，在碱性条件下可离解成离子，因此也可以用离子色谱法进行分析。布洛芬在碱性溶液中离解成负一价的阴离子，所带的电荷较低，其上虽有苯环，但由于其上的苯环距负电荷中心很远，不能与负电荷中心共轭，故带电荷部分不易极化变形，与阴离子交换剂的亲和力较弱，因此选用浓度较低的淋洗液，分离效果良好。但由于其为大分子有机弱酸，电导检测灵敏度低，而其有苯环，故可用紫外检测器进行检测提高灵敏度。如图2-12所示。

药品在磨碎用碱性淋洗液超声提取30min，过滤膜进样测定。

- 分析柱：AS4A
- 淋洗液：1.5 mM Na₂CO₃/1.5 mM NaHCO₃
- 流速：1.5mL/min
- 检测：UV, 223nm

![图2-12. 布洛芬的分离](image)

11. 氯膦酸二钠

氯膦酸二钠（Clodronate Disodium），化学名二氯亚甲基二磷酸二钠，为第二代双磷酸类药物，用于治疗骨质疏松症，变形性骨炎，恶性肿瘤骨转移引起的高钙血症和骨痛症等，其作用效果比第一代双磷酸类药物依替膦酸钠强十倍。

氯膦酸二钠溶于水中生成带负电荷离子，无明显的紫外吸收。由于其水溶性和带电性，用反相HPLC和GC检测，都必须进行柱前衍生。而络合滴定的选择性有限。根据其带电性，使用离子交换色谱分离则有很大的优势，冯金元等报道了用离子色谱分离，柱后衍生紫外检测的分析方法，但柱后衍生麻烦，稳定性不高。氯膦酸二钠本身就带负电荷，可以用电导检测器检测。因此2010版中国药典修订为使用离子色谱法检测。

含量测定，对重复性要求高，因此使用等度洗脱。经试验，45mM KOH淋洗，出峰快（<10min），无干扰，灵敏度高。实际样品6次连续进样，RSD = 0.199%，回收率在99% - 101%，检测限为0.04ug/mL。分析谱图如图2-13所示。

![图2-13. 氯膦酸二钠标准溶液色谱图](image)
杂质测定，淋洗条件为0–20min 20–50mM KOH，20–24min 50mM KOH，24-25min 50-20mM KOH，25-30min 20mM KOH。在此条件下，亚磷酸，氯离子，磷酸与三种副产物，主物质峰均能达到良好分离，如图2-14所示。

12. 甲磺酸帕珠沙星中甲烷磺酸的测定

帕珠沙星是第二代喹诺酮类广谱抗菌药，其生产工艺上必须使用甲烷磺酸作为配位体。而帕珠沙星本身在碱性情况下为一价磷酸盐，也可在柱上保留，并且因为其苯并噁嗪结构，具有亲水性，因此在柱上强保留。可用高浓度淋洗液洗涤，但其含有氨基结构，因此为两性离子，不可电导检测。图2-15为帕珠沙星直接进样的分离谱图。

- 分析柱： AS18
- 淋洗液： 20mM KOH
- 流速： 1.0mL/min
- 检测： 抑制型电导

图2-14. 系统适用性测试谱图

图2-15. 帕珠沙星中甲烷磺酸和常见阳离子的分离
二．阳离子

1．药物中的阳离子

药物中常用碳酸钠、硫酸钠、硫酸镁等作为辅料，而很多药物本身也是有机盐类，所以可以用阳离子进行分离检测。检测的方法可以采取抑制型电导（图2-16）或非抑制型电导法（图2-17）。

- 色谱柱：CS12A（4mm）
- 液洗液：18mM 甲烷磺酸
- 流速：1.0mL/min
- 检测：抑制型电导

![图2-16. CS12A色谱柱分离抑制型电导法检测阳离子](image1)

- 色谱柱：SCS-1
- 液洗液：4mM 酒石酸-2mM 草酸
- 流速：1.0mL/min
- 检测：非抑制型电导，负峰定量

![图2-17. SCS-1色谱柱分离非抑制型电导法检测阳离子](image2)

2．胆碱和乙酰胆碱的测定

胆碱与乙酰胆碱均为神经递质，常用于治疗失忆或者老年痴呆症等脑部功能失调症状。胆碱也是复合维生素B族成分，也常与肌醇组成合剂。它们能在体内生成卵磷脂，促进胆固醇代谢，用于治疗脂肪肝、肝硬化、血管硬化。乙酰胆碱则常用于眼药水中。它们的分析可以使用阳离子色谱或者反相离子对色谱，检测可以用柱后酶解直读安培检测，也可以柱前衍生紫外检测。美国药典中检测眼药水中的乙酰胆碱则用反相离子对色谱分离折光检测器检测。而离子色谱则直接利用电导检测，不需要柱前或柱后衍生，并且柱效更高，只是检测限要差于柱后衍生法，如图2-18和图2-19所示。

- 色谱柱：OmniPac PCX-100
- 液洗液：75mM HCl+1%甲醇
- 流速：1.0ml/min
- 检测：抑制型电导检测，CMMS，100mM TBAOH，5mL/min
- 参考：DIONEX AN 70

![图2-18. OmniPac PCX-100色谱柱分离胆碱和乙酰胆碱](image3)
3. 氨甲酰甲胆碱（氯铵胆碱）

又称氯化乌拉胆碱，为带正电的氨甲酰胆碱与带负电的氯离子形成的盐，为季铵盐类的拟副交感神经药，具有乙酰胆碱的毒副作用作用，作用较持久，也有尼古丁的作用，特别是对胃肠道和膀胱平滑肌的选择性较高，主要用于手术前缓气胀、尿潴留以及其它原因所致的胃肠道或膀胱功能异常。美国药典(USP)方法24 NF 19 (第230页)建议，乌拉胆碱的重量分析法可以用选择性更强的离子色谱分析方法代替。如图2-20和图2-21所示，使用戴安阳离子分离柱，抑制型电导检测，可以实现常规阳离子、乌拉胆碱及其分解产物2-HPTA（2-羟基丙基三甲基胺）（戴安应用注解AN 148）。

- 柱：IonPac CG14+CS14
- 淋洗液：20 mM MSA
- 淋洗液源：EG40
- 温度：30℃
- 流速：1 mL/min
- 进样体积：25 μL
- 检测方式：抑制型电导，CAES

图2-20 CS14色谱柱分离常见六种阳离子、乌拉胆碱及
其分解产物

图2-21 CS12A色谱柱分离常见阳离子和乌拉胆碱
4. 抗组胺药中的电荷测定

硫酸镁、硫酸镁作为抗组胺药中的辅料进行添加，因此可用电荷测检测这些成分，如图2-22所示。（摘自应用注解AN106）

- 分析柱：CS12A
- 淋洗液：20mM 甲烷酸
- 流速：1.0mL/min
- 检测：抑制型电导
- 样品处理：0.6g溶于50mL去离子水

![图2-22. 抗组胺药中的电荷分离](image)

5. 头孢吡肟中的N-甲基吡咯烷

头孢吡肟是新一代头孢类广谱抗菌药。N-甲基吡咯烷是生产头孢吡肟的原料，2010版中国药典规定使用离子色谱法测定头孢吡肟中的N-甲基吡咯烷，含量不能超过0.5%。使用CS15色谱柱，9mM HNO₃+15%乙腈为淋洗液，可使N-甲基吡咯烷分离（如图2-23所示），使用IonPac SCS-1色谱柱10mM HNO₃/5%乙腈也能分离头孢吡肟中的N-甲基吡咯烷（如图2-24所示）。

- 色谱柱：CS15
- 淋洗液：9mM HNO₃+15%乙腈
- 流速：0.9mL/min
- 检测：抑制型电导

![图2-23. CS15色谱柱分离头孢吡肟中的N-甲基吡咯烷](image)

- 色谱柱：IonPac SCG1,SCS1,4mm
- 淋洗液：10mM HNO₃/5%乙腈
- 流速：1.00mL/min
- 进样体积：10μL
- 柱温：30℃
- 检测：非抑制电导检测，检测池温度为40℃
- 样品：A.由2mM硝酸配制的6种常见阳离子标准溶液
 B.由2mM硝酸配制的9μg/mL NMP标准溶液
- 峰：1-6. 常见6种阳离子
 7. NMP 9μg/mL

![图2-24. SCS1色谱柱分离头孢吡肟中的N-甲基吡咯烷](image)
三．抗生素

随着我国制药水平的提高和产品被国际社会认知度的上升，越来越多的抗生素生产企业将自己的目光从国内市场销售，转向了国际市场的需求。其中美国进口的妥布霉素原料药中，有50%以上是由我国的企业供给的，而诸如庆大霉素、奈替米星、卡那霉素、硫酸锌霉素、阿米卡星、链霉素和二氢链霉素、林可霉素和大观霉素等氨基糖苷类抗生素，我国产品也在美国和欧洲市场占有较大的份额。

随着氨基糖苷类抗生素产品的出口，就要求我国抗生素生产厂商严保质量关，确保药品纯度和杂质的含量符合欧洲和美国药品出口的要求。其中妥布霉素、新霉素等在美国药典和欧洲药典中，均有推荐检测方法。所有推荐的检测方法中，均不约而同地选择了戴安的电化学检测器。而其它，例如林可霉素、大观霉素等，并没有推荐方法，而使用戴安的安培检测器可以很好地对药品质量进行监控，也为一些国内国外生产厂商所接受。

本手册总结了九类氨基糖苷类抗生素，高效液相色谱分离-积分安培检测器检测的方法，在汇总了部分欧洲和美国药典推荐方法的同时，将戴安自行研制的方法进行了归类，为需要检测氨基糖苷类抗生素的客户提供了一份简要的指南。

1. 妥布霉素的检测

1.1. 欧洲药典推荐方法:

- 色谱柱：PLRP-S柱（1000Å，8μm，250×4.6 mm）
- 淋洗液：52 g/L无水硫酸钠，1.5 g/L辛烷磺酸钠，3 mL/L四氢呋喃，50 mL/L 0.2M磷酸二氢钾（先用磷酸将pH调为3.0）
- 流速：1 mL/min
- 柱温：55 ℃
- 柱后衍生试剂：50% NaOH，1：25稀释液
- 柱后衍生试剂流速：0.3 mL/min
- 检测器：Dionex电化学检测器，金工作电极，pH-Ag/AgCl参比电极，不锈钢对电极池体，三电位波形

色谱图如图2-25所示。

1.2. 戴安推荐方法:

由于欧洲药典推荐方法，需要进行柱后加碱，操作相对比较复杂，而且使用的流动相中盐度大，且含有有机溶剂，故戴安推荐使用CarboPac PA1色谱柱，NaOH淋洗液等度淋洗，分析检测妥布霉素样品含量及纯度。具体条件如下:

- 色谱柱：CarboPac PA1(250×4.0 mm，Dionex)
- 柱温：30 ℃
- 流动相：EG50淋洗液发生器产生的2mM KOH
- 流速：0.5mL/min
- 进样体积：20 μL
- 检测器：Dionex电化学检测器，金工作电极，pH-Ag/AgCl参比电极，Ti对电极，六电位波形

色谱图如图2-26所示。
2. 庆大霉素的检测

欧洲药典推荐方法:

- 色谱柱：PLRP-S柱（1000Å，8µm，250×4.6 mm）
- 淋洗液：60 g/L无水硫酸钠，1.75 g/L辛烷磷酸钠，8 mL/L四氢呋喃，50 mL/L 0.2M磷酸二氢钠（先用磷酸将pH调为3.0）
- 流速：1 mL/min
- 柱温：50℃
- 柱后衍生试剂：50% NaOH，1:25稀释液
- 柱后衍生试剂流速：0.3 mL/min
- 检测器： Dionex 电化学检测器，金工作电极，pH-Ag/AgCl参比电极，不锈钢对电极池体，三电位波形

色谱图如图2-27所示。

3. 奈替米星的检测

3.1. 欧洲药典推荐方法：

- 色谱柱：PLRP-S柱（1000Å，8µm，250×4.6 mm）
- 淋洗液：35 g/L无水硫酸钠，0.5 g/L辛烷磷酸钠，10 mL/L四氢呋喃，50 mL/L 0.2M磷酸二氢钠（先用磷酸将pH调为3.0）
- 流速：1 mL/min
- 柱温：50℃
- 柱后衍生试剂：50% NaOH，1:25稀释液
- 柱后衍生试剂流速：0.3 mL/min
- 检测器： Dionex 电化学检测器，金工作电极，pH-Ag/AgCl参比电极，不锈钢对电极池体，三电位波形

色谱图如图2-28所示。
3.2. 戴安推荐方法：

由于欧洲药典推荐方法，需要加入对电极消耗较大的四氢呋喃、高浓度盐等物质，因此戴安推荐使用乙酸和乙酸钠缓冲溶液作为流动相，具体条件如下：

- 色谱柱: Acclaim PA柱 (150 × 4.0 mm, 5μm, 2.1 × 150 mm, Dionex)
- 柱温: 40°C
- 流动相: 800 mM HAc/NaAc (pH 5), 1 mM 辛烷磺酸钠, 1% 乙腈
- 流速: 0.25mL/min
- 进样体积: 20μL
- 后衍生试剂: 50% NaOH, 1: 25稀释液
- 后衍生试剂流速: 0.25 mL/min
- 检测器: Dionex电化学检测器，金工作电极，pH-Ag/AgCl参比电极，Ti对电极，六电位波形

色谱图如图2-29所示。

4. 卡那霉素的检测

美国药典推荐方法

- 色谱柱: CarboPac® PA1分析柱及保护柱
- 流动相: 1.8 mM KOH
- 流动相来源: EGC-11 KOH淋洗液罐
- 柱温: 30°C
- 流速: 0.5 mL/min
- 进样体积: 20μL

5. 新霉素的检测

5.1. 欧盟药典推荐方法:

- 色谱柱: Hypersil BDS C18柱 (5μm, 250 × 4.6 mm)
- 淋洗液: 20 mL/L三氟乙酸，6 mL/L 50% NaOH
- 流速: 0.7 mL/min
- 柱温: 25°C
- 后衍生试剂: 50% NaOH, 1: 25稀释液
- 后衍生试剂流速: 0.5 mL/min
- 检测器: Dionex电化学检测器，金工作电极，pH-Ag/AgCl参比电极，不锈钢池体，Ti对电极，三电位波形

色谱图如图2-31所示。
5.2. 戴安推荐方法(1):
- 色谱柱：CarboPac PA1分析柱，4 × 250 mm，
 CarboPac PA1保护柱
- 淋洗液：2.4 mM KOH
- 流速：0.5 mL/min
- 柱温：30°C
- 检测器：Dionex电化学检测器，金工作电极，
 pH-Ag/AgCl参比电极，不锈钢池体，Ti
 对电极，四电位波形
色谱图如图2-32所示。

5.3. 戴安推荐方法(2):
- 色谱柱：Acclaim 120 C18 (250 × 4.6 mm, 5 μm，
 120 Å)
- 淋洗液：20.0 mL TFA, 6.0mL 50% w/w NaOH，
 用纯水稀释至 500 mL，平衡后继续用
 纯水稀释至 1000 mL，超声脱气
- 流速：0.5 mL/min
- 柱温：25°C
- 柱后衍生试剂：50% NaOH，1：25稀释液
- 柱后衍生试剂流速：0.3 mL/min
- 检测器：Dionex电化学检测器，金工作电极，
 pH-Ag/AgCl参比电极，不锈钢池体，Ti
 对电极，四电位波形

6. 阿米卡星的检测
美国药典与戴安推荐方法：
- 色谱柱: CarboPac MA1（L47型填料）(250 × 4.0
 mm)
- 柱温：30°C
- 流动相: 115 mM KOH
- 流速：0.45mL/min
- 进样体积：20 μL
- 检测器：Dionex电化学检测器，金工作电极，
 pH-Ag/AgCl参比电极，Ti对电极，三电位波形
色谱图如图2-33所示。
7. 链霉素和二氢链霉素的检测

美国药典与戴安推荐检测链霉素的方法：

- 色谱柱：CarboPac PA1 分析柱（4 × 250 mm）和保护柱（4 × 50 mm）
- 柱温：30 ℃
- 流动相：70 mM NaOH淋洗液，等度
- 流速：0.5mL/min
- 进样体积：20μL
- 检测器：Dionex电化学检测器，金工作电极，pH-Ag/AgCl参比电极，Ti对电极，六电位波形
- 检测温度：25 ℃

色谱图如图2-34所示。

8. 林可霉素的检测

8.1 美国药典推荐方法：

- 色谱柱：Acclaim 120 C8
- 柱温：46 ℃
- 流动相：13.5mL磷酸稀释到1000 mL，加入氢氧化铵调节pH至6.0，然后按照180：150：150的比例将上述溶液、乙腈和甲醇混合
- 流速：1 mL/min
- 进样体积：20 μL
- 检测器：紫外检测器，210 nm波长

8.2 戴安推荐方法：

- 色谱柱：Vydac C8 Reversed-Phase Analytical (P/N 208TP5415)
- 柱温：30 ℃
- 流动相：6% 乙腈 + 100 mM 乙酸钠(pH 3.75)
- 流速：1 mL/min
- 进样体积：10 μL
- 检测器：Dionex电化学检测器，金工作电极，pH-Ag/AgCl参比电极，Ti对电极，四电位波形

色谱图如图2-35所示。
9. 大观霉素的检测

戴安推荐方法：

- 色谱柱：Dionex Acclaim PA，3 μm
- 流动相 a. 10 mM乙酸、3.3 g/L戊烷磺酸钠用NaOH
 调节到pH=4.0
 b. 10 mM乙酸0.55 g/L戊烷磺酸钠用NaOH
 调节到pH=4.0
 c. 乙腈
- 梯度条件:
<table>
<thead>
<tr>
<th>时间</th>
<th>%A</th>
<th>%B</th>
<th>%C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>70</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>10.0</td>
<td>70</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>10.1</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>20.0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>23.0</td>
<td>0</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>37.0</td>
<td>0</td>
<td>75</td>
<td>25</td>
</tr>
</tbody>
</table>
- 柱温：40℃
- 流动相：详见色谱图
- 流速：0.3 mL/min
- 进样体积：10 μL
- 柱后衍生试剂：50% NaOH，1：25稀释液
- 柱后衍生试剂流速：0.12 mL/min
- 检测器：Dionex电化学检测器，金工作电极，
 pH-Ag/AgCl参比电极，Ti对电极，三电
 位波形

色谱图如图2-36所示。
第三部分 谱睿技术

随着离子色谱应用领域的不断拓展，样品基体种类越发纷繁复杂。戴安在以往三十多年样品前处理的经验基础上，以阀切换和在线固相萃取两大关键技术为依托，推出了全套谱睿“Pre”在线样品前处理解决方案。

谱睿技术的诞生，不仅有助于简化操作步骤，提高实验效率，而且可以进一步减小离子色谱分析的操作误差，节约劳动力和耗材成本。

谱睿技术包含在线技术和离线技术两个方面。离线技术包括一系列的离线前处理柱和滤膜，主要针对样品中所含的颗粒物，有机大分子，重金属，高浓度氨离子，色素等的去除。在线技术包含在线过滤，离线浓缩，在线中和，在线除氯等十余项应用，可针对不同样品干扰基体进行样品前处理，或满足超痕量分析等特殊检测的需求。

目前，谱睿技术已形成了完整的一套技术体系，可很好的满足实验室常规离子色谱样品前处理的要求。随着该体系的日趋完善，谱睿技术必将在离子色谱检测中发挥更为重要的作用。

1. 在线过滤去除样品中的固体颗粒物

当离子色谱样品中含有大于0.45μm颗粒物时，直接进入仪器易造成进样阀损坏，导致泄漏。如果颗粒物进一步进入色谱柱会导致色谱柱堵塞，影响使用寿命。

针对配备自动进样器的用户，使用带有滤塞的自动进样器是阻隔样品中颗粒物的有效方法之一。每次进样时，样品都会自动在引入过程中进行过滤，保证颗粒杂质不会进入色谱系统。

如果采取手动进样或不使用带有滤塞的自动进样器，可在进样阀前加装在线低压过滤器，同样达到去除颗粒物的效果。

谱睿技术推荐在进样阀后加装高压在线过滤器，用于对样品进行二次过滤，同时可将淋洗液中的潜在颗粒物去除，保护色谱柱，延长其使用寿命。

使用谱睿技术可以分别为手动进样和自动进样提供在线解决方案，让在线过滤技术彻底摆脱自动进样器的束缚。

2. 在线检测样品中的超痕量组分

在样品测定过程中，常会由于待测物质浓度太低，导致方法检出限达不到要求而无法检测的情况。这时需要将待测物质进行浓缩后再分析。戴安的超痕量组分在线浓缩技术就是为解决简单基体下超痕量组分分析这一问题而研发的。

样品加入十通阀的大容量孔之后，由超纯水推入到六通阀位置的浓缩柱上。该浓缩过程完成后，软件可自动切换六通阀，随后浓缩柱上的阴离子由淋洗液带入到分离系统，进一步完成整个离子色谱分析过程。

当前，制约痕量分析的一大瓶颈问题，是很难手工配
制低至ng/L级的阴阳离子标准溶液。如果使用高浓度标准曲线进行校准定量的话，会严重影响实验结果。请技术支持如下解决方案：在额外增加的十通阀上，平行放置固定体积比的大、小定量环。小定量环用于进样标准溶液，而大定量环用于进样待测样品，利用两个定量环之间的体积比，譬如1000:1，来完成超低浓度离子标准曲线的制作工作。根据10mL×10μg/L=10μL×10mg/L公式比例关系，即可在不配置μg/L级别标液的情况下，实现μg/L级样品的准确定量。

3. 在线加标及在线标准曲线的制作

请示技术支持的在线浓缩系统，同时具有在线加标和在线标准曲线制作的功能。

需制作标准曲线时，在十通阀标准溶液定量环中连续注入一至十次相同浓度的标准溶液并随之切换十通阀一至十次。而六通阀的浓缩柱则一直处于装载上样状态。这样即可实现1-10倍比例标准溶液的分析，软件会自动生成标准曲线，并对实验结果进行校准。该进样过程可连接自动进样器或蠕动泵等方式来自动完成，也可通过手动进样来实现。

若需实现样品标准加入，需在同或不同定量环中分别注入样品和标准溶液，并保持六通阀的浓缩柱始终处于装载上样状态，从而实现样品标准加入。

以上过程均由软件控制完成，无需人为操作。
替换为H离子，使碳酸盐转化为碳酸。随后，样品进入二氧化碳去除装置，利用气体选择性透过膜和酸碱中和的原理，可去除样品中95%以上的二氧化碳。最后，去除基体后的样品到达大定量环，根据切换时间点的确定，保证样品全部进入色谱系统。

5. 在线去除样品中的氯离子

在常规离子色谱分析过程中，特别是针对海水、食盐、面制品等高氯基体样品，往往存在氯离子含量过高的问题。体现在谱图上，会对常规阴离子检测带来很大干扰。易导致色谱峰变形，保留时间偏移以及部分峰无法分离等。然而，目前的解决方法仅限于离线Ag柱，存在成本高、操作繁琐等问题。针对海水等基体过高的样品，为保证Ag柱不过载，还需要对样品进行稀释，势必影响检出限。

在本方法中，我们使用高纯水将小定量环中的高氯样品推过InGuard Ag柱，该柱填料中包含有强酸型阳离子交换树脂的银盐Ag⁺形式，可利用生成银盐沉淀的原理除去样品溶液中的Cl⁻、Br⁻、I⁻等。为防止微量Ag进入离子色谱系统，我们在Ag柱后加装InGuard Na柱。在线Na柱填料为Na⁺型聚苯乙烯强酸树脂，该树脂对于多价阳离子和过渡金属离子具有良好的选择性。实验表明，该系统除氯效率可达99%以上。随后，去除基体的样品到达大定量环，根据切换时间点的确定，保证样品全部进入色谱系统。

图3-6. 在线去除碳酸根示意图

图3-7. 在线去除样品中氯离子示意图

图3-8. 连续进样10000 ppm氯离子100针所得氯离子剩余百分比变化趋势，进样体积25微升
6．在线中和检测浓碱中的阴离子

强碱样品中阴离子的分析一直是离子色谱的难点之一。高pH值样品会对组分保留时间产生较大影响，并影响色谱峰型和分离度。因此，针对本类样品最好的方法是在上样分析前进行中和。然而，离线中和往往需要外加酸，无论加入的是何种酸，均会引入大量-阴离子。同时，使用试剂的纯度也会导致痕量杂质的引入，这在痕量分析过程中会产生严重影响。谱仪技术中的在线中和技术，可用于在线中和强碱性样品检测痕量阴离子。

该法使用在线H型前处理小柱，高纯水将小定量环中的碱性样品带入在线中和柱（In-Guard H柱），将样品中的阳离子全部替换为H离子，同时与硫酸基相连的氢离子会与碱性样品中的氢氧根离子发生反应，从而起到中和样品的作用。该法避免了中和过程中，常规阴离子及杂质的引入，且前处理柱可再生后重复使用，重现性好。

与离线方法相比，在线方法操作简便，使用成本更低；每针进样，仅需几十微升样品经过在线H柱，大大延长了耗材使用寿命，延长活化周期。经检测，将NaOH（2%）溶液进行在线中和后，Na离子的去除率大于99%，而由于钠离子与氢离子的交换速度，远远小于氢氧根离子的中和反应速度，钠离子99%的去除效率，已充分证明氢氧根已经被完全除掉，实现了在线中和。

7．在线二维色谱测定浓酸中的阴离子

在使用离子色谱检测浓酸样品的过程中，由于主成分含量过高，会造成二峰拖尾，其它组分峰形差，保留时间偏移。因此，我们开发了在线使用排柱柱进行浓酸基体消除的检测方法。

浓酸样品（以浓磷酸为例）进样后，高纯水将样品带入到排柱柱上，由于排柱柱对于短离子组分保留很弱，对长柱组分保留相对较弱，主要以分子形式存在的浓磷酸或中强酸都会被排柱柱所保留；在选择合适的时间段后，将从排柱柱上洗脱下来的离子组分定向保留在高压浓缩柱上，通过切换阀将被洗脱的浓酸基体排入到废液中。淋洗液将浓缩柱上的阴离子洗入色谱分离系统，从而完成基体消除工作。

关于浓氯化氢、浓磷酸和浓乙酸中阴离子检测技术，可参照戴安技术手册TN44、TN45和TN46。
8. 在线去除样品中的疏水性组分

牛奶，奶粉或者肉类等样品在分析过程中，若不经过必要的前处理，所含的大量疏水性组分会进入色谱柱，导致柱压升高，柱效降低。随着进样次数的增加，同种物检测组分会出现峰形拖尾，保留时间提前等现象。长期使用会导致色谱柱损毁。以往通常采用手动离线过RP小柱或C18柱的方法，较为繁琐。我们成功实现了使用在线HRP柱，在线去除样品中的疏水性组分。

针对牛奶或奶粉等样品，我们在样品中按合适比例加入乙腈等蛋白沉淀剂，将样品中蛋白初步沉淀后，取上清液经稀释过滤后直接进样。进样结束后，超纯水将样品推过在线HRP柱，样品中的少量脂肪和其它疏水性组分被捕获，保证离子色谱体系不受污染。

其它类型含有疏水性组分的样品，可根据实际情况选择直接或稀释后进样分析。本法相对于离线方法，操作简便，HRP柱可在使用一段时间后活化以重新使用。只需每50个样品更换一次在线SPE小柱即可，使用过的小柱可用90%乙腈进行再生，并重复使用。（针对不同样品，进样体积和有机容积不同。具体活化频率可咨询应用中心。）

9. 检测反相试剂中的常规阴离子

反相有机溶剂样品，如异丙醇、甲醇、乙腈等，进样后被在线水纯化器产生的纯水推入到低压浓缩柱中，有机溶剂在小柱上没有保留，被纯水冲入到废液中，而被测的阴离子或阳离子则被定向保留到浓缩柱上；进样阀切换后，淋洗液将浓缩柱中的样品洗脱至分离系统，从而完成反相有机溶剂中阴阳离子的检测。
10. 在线去除样品中的重金属

当样品中含有重金属离子时，直接进样会导致色谱柱污染，直接引起柱效下降和峰型变差。所以，当样品中含有重金属离子时，必须通过H柱或Na柱进行去除。

本法中，我们利用高纯水将小定量环中的样品推入过在线阳离子捕获柱（Na型）后进入到大定量环，在程序文件中通过控制阀切换时间保证样品全部进入到大定量环中。经过Na型阳离子捕获柱时，样品中的阳离子，如过渡金属、重金属等会与捕获柱中Na型的磺酸树脂发生离子交换作用，所有金属离子均被Na离子所取代，样品的pH不会改变，弱酸和中强酸的回收率均在95%以上。

图3-15. 在线去除样品中重金属示意图

图3-16. 色谱柱被重金属离子污染后分析标准样品色谱图
附录1 饮用水、环境、食品和药品分析应用资料

1. Dionex在饮用水和环境分析领域中的应用资料注解

 AN2 空气中（滤膜采样）NO\textsubscript{2}和SO\textsubscript{4}2-的测定
 AN24 以甲醛的形式测甲酸
 AN31 酸雨中阴离子的测定
 AN53 盐水中检测痕量硫酸盐的方法
 AN55 金属氯化物的测定
 AN80 离子色谱法测定饮用水、地表水和工业废水中可溶性六价铬
 AN81 直接进样－离子色谱法测定饮用水中氯化物和Br-
 AN101 臭氧消毒的饮用水中痕量溴酸根（BrO\textsubscript{3}-）的离子色谱法测定
 AN121 离子色谱法测定饮用水和地表水中低浓度的ClO\textsubscript{3}-
 AN133 离子色谱法测定饮用水中的无机阴离子
 AN134 离子色谱法测定饮用水和地表水中低浓度的高氯酸盐
 AN135 离子色谱法测定废水中的无机阴离子
 AN136 饮用水消毒副产物中的无机卤素含氧酸、阴离子和溴化物的离子色谱法测定，溴酸盐的柱后衍生离子色谱法测定
 AN138 炼油厂废水和其它废水中硫代硫酸盐的测定
 AN140 离子色谱法快速分析饮用水中的阴离子
 AN141 用IonPacCS16分析柱的离子色谱法测定环境水样中的阴离子和铵
 AN149 带有检测低ppb溴酸盐的在线产生柱后试剂装置，离子色谱法测定饮用水中亚氯酸根、溴酸盐、溴化物和氯酸盐
 AN151 离子色谱与电喷雾质谱联用测定环境水样中的高氯酸盐
 AN154 氢氧根选择性柱测定环境水样中的无机阴离子
 AN168 柱后联卤素胺衍生，RFIC检测饮用水中痕量消毒副产物和Br-
 AN171 柱后加入酸化试剂，RFIC检测饮用水中消毒副产物和Br-
 AN173 离子色谱脉冲积分安培直接检测饮用水中的氯根
 AN176 U.S.EPA方法中使用预浓缩基体消除，抑制电导检测饮用水中低ppb级高氯酸盐
 AN178 2-D离子色谱预浓缩，抑制电导检测饮用水中的痕量高氯酸盐
 AN184 瓶装天然矿泉水中痕量ClO\textsubscript{3}-，BrO\textsubscript{3}-，ClO\textsubscript{3}-的检测
 AU106 测定海水中痕量Ca2+，Mg2+
 AU107 强碱性溶液中氟化物（CN-）的直接测定
 AU118 KCl土壤提取液中NO\textsubscript{3}-，NO\textsubscript{2}-和胺的测定
 AU119 酚的测定
 AU122 海水中I-的测定
 AU131 化学抑制型离子色谱测定饮用水中NO\textsubscript{2}和NO\textsubscript{3}
 AU132 饮用水中NO\textsubscript{2}/NO\textsubscript{3}的直接UV测定
 AU144 离子色谱法测定饮用水中的六价铬
2. Dionex在食品分析领域中的应用资料注解

AN21 葡萄酒中的有机酸
AN25 非酒精类碳酸饮料中无机阴离子和有机酸的测定
AN37 奶制品中碘离子的测定
AN46 离子色谱：一种分析啤酒的通用技术
AN54 离子排斥色谱法，脉冲安培检测器测定食品和饮料中的亚硫酸根
AN82 果汁中掺杂的甜菜转化糖的测定
AN87 高效离子交换色谱－脉冲安培检测器测定糖果和果汁中的糖醇
AN92 高效离子交换色谱－脉冲安培检测器测定糖浆中的糖
AN112 用高效离子交换色谱检测肉中的硝酸盐和亚硝酸盐
AN122 肉汤发酵液中的糖、乙醇和乙二醇的测定
AN123 发酵肉汤中无机阴离子和有机酸的测定
AN124 干乳和婴儿配方奶粉中胆碱的测定
AN143 果汁中有机酸的测定
AN147 AOAC方法2000.11－测定食品中的葡萄糖
AN155 AOAC方法2001.02－测定食品中的反式半乳低聚糖
AN159 HPAE-PAD法测定三氯蔗糖
AN165 免试剂（RFIC）离子色谱法测定液体食品中的安息香酸盐
AU150 用CarboPac PA 200测定植物衍生的中性低聚糖和多糖
AU151 高效阴离子交换色谱脉冲安培检测测定还原糖沥青乳浊液中的三氯蔗糖
AU153 CRD + RFIC快速检测碳酸饮料中的PO₄³⁻和柠檬酸

3. Dionex在医药卫生领域中的应用资料注解

AN61 配方药中的托普霉素
AN66 洗涤剂中新霉素
AN104 离子色谱法在生活用品检测中的应用
AN106 离子色谱在制药工业中的应用
4、Dionex在生命科学领域中的应用资料注解

AN107 生理液中的离子
AN109 柱后衍生—阳离子交换法测定镇草宁
AN115 多肽中三氟乙酸的测定
AN116 药物中阴离子的定量分析
AN117 药物中糖和乙二醇的测定
AN148 离子色谱法测定乌拉胆碱
AN156 离子色谱法检测牙膏中的阴离子
AN164 离子色谱法检测药方中的柠檬酸盐和磷酸盐
AU141 用四电位波形（波形A）提高N-乙酰神经氨酸和N-羟乙酰神经氨酸峰面积响应的长期稳定性
TN20 高效阴离子交换色谱——脉冲安培检测器分析碳水化合物

TN30 电子传递到聚偏氟乙烯膜上糖蛋白中单糖和寡糖的分析
TN36 用HPAE-PAD对连接的低聚糖的外切糖苷酸的消化作用的分析
TN40 用HPAE-PAD分析糖蛋白中的单糖
TN41 高效阴离子色谱法分析唾液糖
TN42 高效阴离子色谱法分析寡糖
TN50 AAA氨基直接酸分析仪直接测定蛋白质中氨基酸的含量
TN53 用配置洗液在线发生器的HPAE-PDA测定糖蛋白中单糖的组成
5. Dionex在化工与电子领域中的应用资料注解

AN39 炼油水中乙醇胺的测定
AN56 测定火电厂的高纯、氯化、硼酸化循环水中的痕量阴离子
AN71 抑制型离子色谱法测定多聚磷酸盐
AN72 离子色谱/溶等离子体电感耦合光谱（ICAP）测定水溶性的有机溶液中痕量金属离子
AN73 离子色谱/氧等离子体电感耦合光谱（ICAP）测定试剂纯的酸、碱、盐中的痕量过渡金离子
AN75 硝酸合离子色谱法测定试剂纯的酸、碱、盐中的痕量过渡金属离子
AN78 高浓度氢氟酸中痕量阴离子的测定
AN85 有机溶剂中痕量阴离子的检测
AN86 含吗啉电厂水中痕量阳离子的测定
AN93 使用自动中和预处理/离子色谱法测定浓缩酸中的痕量阴离子
AN94 使用自动中和预处理/离子色谱法测定浓缩酸中的痕量阳离子
AN113 大体积/直接进样离子色谱法测定高纯水中的痕量阴离子
AN119 半导体腐蚀槽中离子化的含氟表面活性剂的测定
AN120 盐水中Ca\(^{2+}\)、Mg\(^{2+}\) 的测定
AN131 高纯水和SC2（D-CLEAN）槽中PPT级过渡金属的测定
AN137 离子色谱法测定高浓度硝酸盐基体中的痕量阴离子
AN144 离子色谱法测定高离子强度肥料萃取液中的高氯酸盐
AN145 酸性铜电镀液中添加抑制剂s的测定
AN146 EG40淋洗液在线发生器，AS17高容量柱，离子色谱法直接大体积进样分析高纯水中的痕量阴离子
AN152 含高浓度乙醇胺的电厂水中ppt级钠离子的测定
AN153 电子元件萃取液中痕量杂质阴离子的监测
AN158 离子色谱非抑制型电导法测定电厂水中的痕量钠离子和过渡金属离子
AN166 淋洗液发生器在硼酸化水中痕量阴离子分析中的应用
AU102 电厂高纯水和硼酸化水中的痕量阴离子
AU103 电厂高纯水中痕量阴离子的测定
AU109 离子色谱对吡咯烷伪造抑制剂的测定
AU111 电镀铜使用的LeaRon酸中微量PCM和PC的检测
AU113 二氧化硅的测定
AU121R 炸药中的单价阳离子
AU126 离子色谱对表面抛光液，废水和洗塔液中的二乙醇胺和三乙醇胺的测定
AU133 镀锌的硫酸电镀液中邻碘酰苯甲酰亚胺的测定
AU137 工业过程水中痕量锂的测定
AU138 阳离子交换色谱法测定工业用水中乙醇胺
AU139 钢槽中离子化表面活性剂（FC-95）的测定
AU142 用EG40通过加大进样体积提高高纯水中痕量阴离子的测定
AU143 酸性铜电镀液中氯化物的测定
TN44 高浓度磷酸中痕量阴离子的测定
6. Dionex在其他领域中的应用资料注解

AN45 脂肪酸的分析
AN51 测定氢氧化钠溶液中阴离子的方法
AN69 静电离子色谱法测定复杂基体中的铝
AN76 离子色谱/氢等离子体电感耦合光谱（ICAP）消除样品基体中的铁和铝
AN77 静电离子色谱法测定过渡金属时基体干扰因素铁和铝的消除
AN79 静电离子色谱法测定复杂基体中的铀和钍
AN157 抑制型电导和非抑制型电导法测定常见无机阳离子的比较
AU147 离子色谱法紫外检测直接测定金属氰化物
TN8 离子色谱中浓缩柱的使用
TN9 电导检测、电导率定律和电离平衡
TN10 离子色谱法测定过渡金属
TN12 抑制电导检测——离子对色谱测定方法的发展
TN16 第一代Dionex色谱柱淋洗液的配制
TN19 阴离子交换、电导检测，离子色谱中的梯度淋洗
TN21 Dionex脉冲安培检测器测定糖时脉冲安培检测器的优化设置
TN23 铵系金属的离子色谱测定
TN25 静电离子色谱法测定复杂基体中的过渡金属
TN28 离子色谱/电感耦合等离子体光谱（ICAP）；测定痕量金属离子的新技术
TN43 采用平滑算法减少基线噪音
TN47 抑制电导检测器测定阴离子时使用碳酸盐做淋洗液可以获得低的基线噪音
TN54 Chromelon(变色龙)色谱管理软件符合21 CFR Part11规定
TN55 用AAA直接分析仪进行样品基体的筛选和单个基体中有效成分的筛选
TN56 可调容量阴离子交换柱Cryptand A1的方法开发
TN512 液相色谱、离子色谱与采用大气压电离技术的AQA质谱联用检测
附录2 国际官方公布的离子色谱标准分析方法

一与饮用水和环境有关部分

1. 美国国家环保局（EPA）

<table>
<thead>
<tr>
<th>方法编号</th>
<th>方法名称</th>
<th>测定对象</th>
<th>样品基体</th>
</tr>
</thead>
<tbody>
<tr>
<td>218.6</td>
<td>离子色谱法测定饮用水、地下水、工业废水中的可溶性六价铬</td>
<td>Cr（VI）</td>
<td>饮用水、地下水、工业废水</td>
</tr>
<tr>
<td>300.0</td>
<td>离子色谱法测定水中的无机阴离子</td>
<td>F⁻、Cl⁻、NO₂⁻、Br⁻、NO₃⁻、PO₄³⁻、SO₄²⁻</td>
<td>饮用水、地下水、工业废水及纯水、地表水、生活废水</td>
</tr>
<tr>
<td>300.1</td>
<td>方法A常见无机阴离子</td>
<td>F⁻、Cl⁻、NO₂⁻、Br⁻、NO₃⁻、PO₄³⁻、SO₄²⁻</td>
<td>饮用水、地下水、工业废水及纯水、地表水、生活废水</td>
</tr>
<tr>
<td>300.6</td>
<td>化学抑制型离子色谱法测定湿沉降中的氯离子、磷酸根、硝酸根和硫酸根</td>
<td>NO₃⁻、Cl⁻、PO₄³⁻、SO₄²⁻</td>
<td>雨水、露水、雪水、冰雹、冻雨</td>
</tr>
<tr>
<td>300.7</td>
<td>化学抑制型离子色谱法测定湿沉降中钠、铵、钾、镁和钙</td>
<td>Na⁺、NH₄⁺、K⁺、Mg²⁺、Ca²⁺</td>
<td>雨水、露水、雪水、冰雹、冻雨</td>
</tr>
<tr>
<td>302.2</td>
<td>二维离子色谱电导检测器测定饮用水中的溴酸根</td>
<td>溴酸根</td>
<td>饮用水</td>
</tr>
<tr>
<td>314.0</td>
<td>离子色谱法测定饮用水中的高氯酸根（修订本1.0）</td>
<td>ClO₄⁻</td>
<td>试剂用水、地表水、地下水、饮用水</td>
</tr>
<tr>
<td>314.2</td>
<td>二维离子色谱电导检测器测定饮用水中的高氯酸根</td>
<td>ClO₄⁻</td>
<td>饮用水</td>
</tr>
<tr>
<td>314.1</td>
<td>在线柱浓缩法测定离心色谱电导检测器测定饮用水中的高氯酸根</td>
<td>ClO₄⁻</td>
<td>饮用水</td>
</tr>
<tr>
<td>317.0</td>
<td>柱后衍生离子色谱法测定饮用水中无机卤素消毒副产物—痕量溴酸根</td>
<td>ClO₄⁻、ClO₃⁻、BrO₃⁻、Br⁻</td>
<td>试剂用水、地表水、地下水、饮用水</td>
</tr>
<tr>
<td>7199</td>
<td>离子色谱法测定饮用水、地下水、工业废水中的六价铬</td>
<td>Cr（VI）</td>
<td>饮用水、地下水、工业废水</td>
</tr>
<tr>
<td>331.0</td>
<td>LC-EIMS检测饮用水中的高氯酸根</td>
<td>ClO₄⁻</td>
<td>饮用水</td>
</tr>
<tr>
<td>332.0</td>
<td>IC-EIMS检测饮用水中的高氯酸根</td>
<td>ClO₄⁻</td>
<td>饮用水</td>
</tr>
<tr>
<td>9056A</td>
<td>离子色谱法检测阴离子</td>
<td>F⁻、Cl⁻、NO₂⁻、Br⁻、NO₃⁻、PO₄³⁻、SO₄²⁻</td>
<td>氧瓶燃烧的固体样品及水样</td>
</tr>
<tr>
<td>302.0</td>
<td>二维离子色谱法检测消毒副产物（DBP）</td>
<td>阴离子，BrO₃⁻</td>
<td>环境样品</td>
</tr>
<tr>
<td>321.8</td>
<td>溴酸盐</td>
<td>BrO₃⁻</td>
<td>环境样品</td>
</tr>
<tr>
<td>SW-846</td>
<td>高氯酸盐</td>
<td>ClO₄⁻</td>
<td>环境样品</td>
</tr>
<tr>
<td>1636</td>
<td>IC-UV检测六价铬</td>
<td>Cr（VI）</td>
<td>环境样品</td>
</tr>
<tr>
<td>9058</td>
<td>高氯酸盐</td>
<td>ClO₄⁻</td>
<td>环境样品</td>
</tr>
</tbody>
</table>
2. 职业安全与健康国家研究所（NIOSH）

<table>
<thead>
<tr>
<th>方法编号</th>
<th>方法名称</th>
<th>测定对象</th>
<th>样品基体</th>
</tr>
</thead>
<tbody>
<tr>
<td>5173</td>
<td>甲酸</td>
<td>甲酸</td>
<td>空气样品</td>
</tr>
<tr>
<td>2008</td>
<td>氯乙酸</td>
<td>氯乙酸</td>
<td>空气样品</td>
</tr>
<tr>
<td>3509</td>
<td>氨基乙醇化合物</td>
<td>乙醇胺、二乙醇胺、三乙醇胺</td>
<td>空气样品</td>
</tr>
<tr>
<td>5022</td>
<td>有机砷</td>
<td>甲基酸、二甲基酸、氨基苯胂酸</td>
<td>空气样品</td>
</tr>
<tr>
<td>6004</td>
<td>二氧化硫</td>
<td>SO$_2$、SO$_4^{2-}$</td>
<td>空气样品</td>
</tr>
<tr>
<td>6005</td>
<td>碘</td>
<td>I$^{-}$</td>
<td>空气样品</td>
</tr>
<tr>
<td>6011</td>
<td>汞、氟</td>
<td>Br$^{-}$、Cl$^{-}$</td>
<td>空气样品</td>
</tr>
<tr>
<td>6701</td>
<td>氮</td>
<td>NH$_4^+$</td>
<td>空气样品</td>
</tr>
<tr>
<td>7604</td>
<td>六价铬</td>
<td>Cr（VI）</td>
<td>空气样品</td>
</tr>
<tr>
<td>7903</td>
<td>无机酸</td>
<td>F$^{-}$、Cl$^{-}$、NO$_3^-$、Br$^{-}$、PO$_4^{3-}$、SO$_4^{2-}$</td>
<td>空气样品</td>
</tr>
</tbody>
</table>

3. 美国材料与试验协会（ASTM）

<table>
<thead>
<tr>
<th>方法编号</th>
<th>方法名称</th>
<th>测定对象</th>
<th>样品基体</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4327-91</td>
<td>化学抑制型离子色谱法测定水中的阴离子</td>
<td>F$^{-}$、Cl$^{-}$、NO$_3^-$、NO$_2^-$、Br$^{-}$、PO$_4^{3-}$、SO$_4^{2-}$</td>
<td>饮用水、废水</td>
</tr>
<tr>
<td>D4856-88</td>
<td>离子色谱法测定车间空气中的硫酸雾</td>
<td>SO$_4^{2-}$</td>
<td>空气样品</td>
</tr>
<tr>
<td>D5085-90</td>
<td>化学抑制型离子色谱法测定大气湿沉降物中的氯离子、硝酸根和硫酸根</td>
<td>Cl$^{-}$、NO$_3^-$、SO$_4^{2-}$</td>
<td>湿沉降物、雨水、雪水、冻雨</td>
</tr>
<tr>
<td>D5281-92</td>
<td>室外环境、工作场所和室内空气中六价铬的采集与分析</td>
<td>Cr（VI）</td>
<td>空气样品</td>
</tr>
<tr>
<td>D5542-92</td>
<td>离子色谱法测定高纯水中的阴离子</td>
<td>F$^{-}$、Cl$^{-}$、NO$_3^-$、SO$_4^{2-}$</td>
<td>高纯水</td>
</tr>
<tr>
<td>D5257-93</td>
<td>水中六价铬的采集与分析</td>
<td>Cr（VI）</td>
<td>饮用水、地表水、废水</td>
</tr>
<tr>
<td>D2036-9</td>
<td>水中氨化物</td>
<td>CN$^{-}$</td>
<td>饮用水、废水</td>
</tr>
<tr>
<td>D 19.05.03.21</td>
<td>消毒副产物阴离子</td>
<td>DBP阴离子</td>
<td>环境样品</td>
</tr>
</tbody>
</table>
4. 职业安全与健康署（OSHA）

<table>
<thead>
<tr>
<th>方法编号</th>
<th>方法名称</th>
<th>测定对象</th>
<th>样品基体</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID-104</td>
<td>车间空气中的二氧化硫</td>
<td>SO(_2^−)</td>
<td>空气样品</td>
</tr>
<tr>
<td>ID-108</td>
<td>车间空气中的溴化氢</td>
<td>Br(^−), BrO(_3^−)</td>
<td>空气样品</td>
</tr>
<tr>
<td>ID-177</td>
<td>车间空气中的碘（固体吸附剂）</td>
<td>I(^−)</td>
<td>空气样品</td>
</tr>
<tr>
<td>ID-180</td>
<td>车间空气中的磷酸氢</td>
<td>PO(_4^{3−})</td>
<td>空气样品</td>
</tr>
<tr>
<td>ID-183</td>
<td>车间空气中的二氧化氮</td>
<td>NO(_2^−)</td>
<td>空气样品</td>
</tr>
<tr>
<td>ID-188</td>
<td>车间空气中的溴化氢（固体吸附剂）</td>
<td>NH(_4^+)</td>
<td>空气样品</td>
</tr>
<tr>
<td>ID-190</td>
<td>车间空气中的氧化氮</td>
<td>NO(_2^−)</td>
<td>空气样品</td>
</tr>
<tr>
<td>ID-202</td>
<td>车间空气中的二氧化氯</td>
<td>ClO(_2^−)</td>
<td>空气样品</td>
</tr>
</tbody>
</table>

5. 美国水和废水标准分析方法（SMEWW）

<table>
<thead>
<tr>
<th>方法编号</th>
<th>方法名称</th>
<th>测定对象</th>
<th>样品基体</th>
</tr>
</thead>
<tbody>
<tr>
<td>4410</td>
<td>离子色谱法测定阴离子</td>
<td>F(^−), Cl(^−), NO(_3^−), Br(^−), PO(_4^{3−}), SO(_4^{2−})</td>
<td>饮用水、地下水、废水、地表水</td>
</tr>
<tr>
<td>4110</td>
<td>消毒副产物阴离子</td>
<td>无机阴离子</td>
<td>环境样品</td>
</tr>
</tbody>
</table>

6. 国际标准组织（ISO）

<table>
<thead>
<tr>
<th>方法编号</th>
<th>方法名称</th>
<th>测定对象</th>
</tr>
</thead>
<tbody>
<tr>
<td>14911:1998（E）</td>
<td>消毒副产物中的阳离子和铵离子</td>
<td>无机阳离子, NH(_4^+)</td>
</tr>
</tbody>
</table>

7. 美国官方分析化学家协会方法（AOAC）

<table>
<thead>
<tr>
<th>方法编号</th>
<th>方法名称</th>
<th>测定对象</th>
<th>样品基体</th>
</tr>
</thead>
<tbody>
<tr>
<td>993.23</td>
<td>饮用水、地下水及工业废水中水溶性Cr-VI的测定</td>
<td>Cr-VI</td>
<td>饮用水、地下水和工业废水</td>
</tr>
<tr>
<td>993.30</td>
<td>水中无机阴离子的测定</td>
<td>无机阴离子</td>
<td>水</td>
</tr>
</tbody>
</table>
二、与食品饮料有关部分

1. 美国官方分析化学家协会方法（AOAC）

<table>
<thead>
<tr>
<th>方法编号</th>
<th>方法名称</th>
<th>测定对象</th>
<th>样品基体</th>
</tr>
</thead>
<tbody>
<tr>
<td>990.31</td>
<td>食品和饮料中的亚硫酸盐－离子排斥色谱</td>
<td>亚硫酸盐</td>
<td>食品、饮料</td>
</tr>
<tr>
<td>996.04</td>
<td>甘蔗和甜菜根中糖的测定</td>
<td>糖</td>
<td>甘蔗、甜菜根</td>
</tr>
<tr>
<td>2000.17</td>
<td>原蔗糖中痕量葡萄糖和果糖的测定</td>
<td>葡萄糖、果糖</td>
<td>原蔗糖</td>
</tr>
<tr>
<td>2000.11</td>
<td>食品中葡萄糖的测定</td>
<td>葡萄糖</td>
<td>食品</td>
</tr>
<tr>
<td>2001.02</td>
<td>食品中反式-低聚半乳糖的测定</td>
<td>反式-低聚半乳糖</td>
<td>食品</td>
</tr>
</tbody>
</table>

三、与药物有关部分

1. 欧州药典方法－妥布霉素的检测
2. 欧州药典方法－庆大霉素的检测
3. 欧州药典方法－奈替米星的检测
4. 美国药典方法－卡那霉素的检测
5. 美国药典方法－新霉素的检测
6. 美国药典方法－阿米卡星的检测
7. 美国药典方法－链霉素的检测
附录3、国内与离子色谱有关的标准方法

一、与环境有关部分

<table>
<thead>
<tr>
<th>方法编号</th>
<th>标准类型</th>
<th>方法名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB 13580.5-92</td>
<td>中华人民共和国国家标准</td>
<td>大气降水中F⁻、Cl⁻、NO₂⁻、NO₃⁻、SO₄²⁻的测定—IC法</td>
</tr>
<tr>
<td>DZ/T 0064.51-93</td>
<td>中华人民共和国地质矿产行业标准</td>
<td>地下水质检验方法 离子色谱法测定氟离子、氯离子、溴离子、硝酸根和硫酸根</td>
</tr>
<tr>
<td>DZ/T 0064.28-93</td>
<td>中华人民共和国地质矿产行业标准</td>
<td>地下水质检验方法 离子色谱法测定钾、钠、锂和铵</td>
</tr>
<tr>
<td>SL SL 86-88-94</td>
<td>中华人民共和国水利行业标准</td>
<td>水质分析方法 水中无机阴离子的测定—IC法 (适用于地面水、地下水、饮用水、降水和工业废水 中F⁻、Cl⁻、NO₂⁻、NO₃⁻、PO₄³⁻、SO₄²⁻的测定)</td>
</tr>
<tr>
<td>GB/T 11446.7-1997</td>
<td>中华人民共和国国家标准</td>
<td>电子级水中痕量氯离子、硝酸根离子、磷酸根离子、硫酸根离子的离子色谱测试方法</td>
</tr>
<tr>
<td>CJ/T 143-2001</td>
<td>中华人民共和国城镇建设行业标准</td>
<td>城市供水 钠、镁、钙的测定 离子色谱法</td>
</tr>
<tr>
<td>HJ/T 83-2001</td>
<td>中华人民共和国环境行业标准</td>
<td>水质 可吸附有机卤素 (AOX) 的测定 离子色谱法</td>
</tr>
<tr>
<td>HJ/T 84-2001</td>
<td>中华人民共和国环境行业标准</td>
<td>水质 无机阴离子的测定 离子色谱法</td>
</tr>
<tr>
<td>GBZ/T160.36-2004</td>
<td>中华人民共和国国家职业卫生标准</td>
<td>工业场所空气有毒物质测定 氯化物</td>
</tr>
<tr>
<td>GBZ/T160.37-2004</td>
<td>中华人民共和国国家职业卫生标准</td>
<td>工业场所空气有毒物质测定 氯化物</td>
</tr>
<tr>
<td>DL/T 954-2005</td>
<td>中华人民共和国电力行业标准</td>
<td>火力发电厂水汽试验方法 痕量氟离子、乙酸根离子、甲酸根离子、氯离子、亚硝酸根、磷酸根、磷酸根离子和硫酸根离子的测定-离子色谱法</td>
</tr>
<tr>
<td>SY/T 5523-2006</td>
<td>中华人民共和国石油天然气行业标准</td>
<td>油田水分析方法</td>
</tr>
<tr>
<td>GB/T 5750.5-2006</td>
<td>中华人民共和国国家标准</td>
<td>生活饮用水标准检验方法 饮用水中F⁻、Cl⁻、NO₂⁻、SO₄²⁻的测定—IC法(抑制型电导)</td>
</tr>
<tr>
<td>GB/T 5750.6-2006</td>
<td>中华人民共和国国家标准</td>
<td>生活饮用水标准检验方法 饮用水中Na⁺、Li⁺、K⁺、Mg²⁺、Ca²⁺的测定—IC法(抑制型电导)</td>
</tr>
<tr>
<td>标准号</td>
<td>标准名称</td>
<td>内容</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>GB/T 5750.10-2006</td>
<td>中华人民共和国国家标准</td>
<td>生活饮用水标准检验方法 饮用水中ClO₂、ClO₃⁻、Br和BrO₃⁻的测定—IC法</td>
</tr>
<tr>
<td>GB/T 5750.10-2006</td>
<td>中华人民共和国国家标准</td>
<td>生活饮用水标准检验方法 饮用水中溴酸盐的测定—IC法</td>
</tr>
<tr>
<td>GBZ/T 160.85-2007</td>
<td>中华人民共和国国家职业卫生标准</td>
<td>工业场所空气有毒物质测定 碘及其化合物</td>
</tr>
<tr>
<td>GB 5085.3-2007</td>
<td>中华人民共和国国家标准</td>
<td>危险废物鉴别标准 浸出毒性鉴别</td>
</tr>
<tr>
<td>GB 5085.3-2007</td>
<td>中华人民共和国国家标准</td>
<td>附录F 固体废物 氟离子、溴酸根、氯离子、亚硝酸根、氟离子、溴离子、硝酸根、磷酸根、硫酸根的测定 离子色谱法</td>
</tr>
<tr>
<td>NY/T 1375-2007</td>
<td>中华人民共和国农业行业标准</td>
<td>植物产品中亚硝酸盐与硝酸盐的测定 离子色谱法</td>
</tr>
<tr>
<td>NY/T 1374-2007</td>
<td>中华人民共和国农业行业标准</td>
<td>植物产品中氟的测定 离子色谱法</td>
</tr>
<tr>
<td>GB 8076-2008</td>
<td>中华人民共和国国家标准</td>
<td>混凝土外加剂中氯离子含量的测定方法（离子色谱法）</td>
</tr>
<tr>
<td>GB/T 8538-2008</td>
<td>中华人民共和国国家标准</td>
<td>饮用天然矿泉水检验方法</td>
</tr>
<tr>
<td>GB/T 14642-2009</td>
<td>中华人民共和国国家标准</td>
<td>工业循环冷却水及锅炉水中氯、氟、磷酸根、亚硝酸根、硝酸根和硫酸根的测定 离子色谱法</td>
</tr>
<tr>
<td>GB/T 15454-2009</td>
<td>中华人民共和国国家标准</td>
<td>工业循环冷却水中钠、铵、钾、镁和钙离子的测定 离子色谱法</td>
</tr>
<tr>
<td>HG 544-2009</td>
<td>中华人民共和国环境行业标准</td>
<td>固定污染源废气 硫酸雾的测定 离子色谱法（暂行）</td>
</tr>
<tr>
<td>HG 549-2009</td>
<td>中华人民共和国环境行业标准</td>
<td>环境空气和废气 氯化氢的测定 离子色谱法（暂行）</td>
</tr>
</tbody>
</table>
二、与食品饮料及烟草有关部分

<table>
<thead>
<tr>
<th>方法编号</th>
<th>标准类型</th>
<th>方法名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB 37/T 343-2003</td>
<td>山东省地方标准</td>
<td>鲢鱼等水产中多聚磷酸盐含量的测定方法-离子色谱法</td>
</tr>
<tr>
<td>HG/T 2941-2004</td>
<td>中华人民共和国化工行业标准</td>
<td>饲料级氯化胆碱（仲裁法为离子色谱法）</td>
</tr>
<tr>
<td>GB/T 20188-2006</td>
<td>中华人民共和国国家标准</td>
<td>小麦粉中溴酸盐的测定 离子色谱法</td>
</tr>
<tr>
<td>NY/T 1619-2008</td>
<td>中华人民共和国行业标准</td>
<td>饲料中甜菜碱的测定 离子色谱法</td>
</tr>
<tr>
<td>GB/T 17481-2008</td>
<td>中华人民共和国国家标准</td>
<td>预混料中氯化胆碱的测定（仲裁法为离子色谱法）</td>
</tr>
<tr>
<td>GB/T 21515-2008</td>
<td>中华人民共和国国家标准</td>
<td>饲料添加剂 天然甜菜碱</td>
</tr>
<tr>
<td>GB/T 21533-2008</td>
<td>中华人民共和国国家标准</td>
<td>蜂蜜中淀粉糖浆的测定 离子色谱法</td>
</tr>
<tr>
<td>GB/T 5009.33-2008</td>
<td>中华人民共和国国家标准</td>
<td>食品中亚硝酸盐与硝酸盐的测定</td>
</tr>
<tr>
<td>SN/T 2210-2008</td>
<td>中华人民共和国出入境检验检疫行业标准</td>
<td>保健食品中六价铬的测定 离子色谱-电感耦合等离子体质谱法</td>
</tr>
<tr>
<td>GB/T 23710-2009</td>
<td>中华人民共和国国家标准</td>
<td>饲料中甜菜碱的测定 离子色谱法</td>
</tr>
<tr>
<td>GB/T 23780-2009</td>
<td>中华人民共和国国家标准</td>
<td>糕点中总糖的测定 离子色谱法</td>
</tr>
<tr>
<td>GB 5413.20-2009</td>
<td>中华人民共和国国家标准</td>
<td>婴幼儿食品和乳制品中胆碱的测定 3 离子色谱法</td>
</tr>
<tr>
<td>YC/T 283-2009</td>
<td>中华人民共和国烟草行业标准</td>
<td>烟草及烟草制品 淀粉的测定 醇水解-离子色谱法</td>
</tr>
<tr>
<td>YC/T 248-2008</td>
<td>中华人民共和国烟草行业标准</td>
<td>烟草及烟草制品 无机阴离子的测定 离子色谱法</td>
</tr>
<tr>
<td>YC/T 251-2008</td>
<td>中华人民共和国烟草行业标准</td>
<td>烟草及烟草制品 葡萄糖、果糖、蔗糖的测定 离子色谱法</td>
</tr>
<tr>
<td>YC/T 252-2008</td>
<td>中华人民共和国烟草行业标准</td>
<td>烟用料液 葡萄糖、果糖、蔗糖的测定 离子色谱法</td>
</tr>
<tr>
<td>YC/T 275-2008</td>
<td>中华人民共和国烟草行业标准</td>
<td>卷烟纸中柠檬酸根离子、磷酸根离子和醋酸根离子的测定 离子色谱法</td>
</tr>
<tr>
<td>YC/T 346—2010</td>
<td>中华人民共和国烟草行业标准</td>
<td>烟草及烟草制品果胶的测定离子色谱法</td>
</tr>
<tr>
<td>YC/T 348-2010</td>
<td>中华人民共和国烟草行业标准</td>
<td>卷烟主流烟气中氧化物的测定离子色谱法</td>
</tr>
<tr>
<td>YC/T 375—2010</td>
<td>中华人民共和国烟草行业标准</td>
<td>烟用添加剂环己氨基磺酸钠的测定离子色谱法</td>
</tr>
</tbody>
</table>
三、与化妆品有关部分

<table>
<thead>
<tr>
<th>方法编号</th>
<th>标准类型</th>
<th>方法名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007化妆品卫生规范</td>
<td>硫基乙酸的离子色谱法测定</td>
<td></td>
</tr>
<tr>
<td>2007化妆品卫生规范</td>
<td>锶的离子色谱法测定</td>
<td></td>
</tr>
<tr>
<td>2007化妆品卫生规范</td>
<td>羟基酸的离子色谱法测定</td>
<td></td>
</tr>
<tr>
<td>GBT 24800.13-2009</td>
<td>中华人民共和国国家标准</td>
<td>化妆品中亚硝酸盐的测定 离子色谱法</td>
</tr>
</tbody>
</table>

四、其他

<table>
<thead>
<tr>
<th>方法编号</th>
<th>标准类型</th>
<th>方法名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIG 828-93</td>
<td>中华人民共和国国家计量检定规程—离子色谱仪</td>
<td></td>
</tr>
<tr>
<td>JY/T 020-1996</td>
<td>离子色谱分析方法通用</td>
<td></td>
</tr>
<tr>
<td>GB/T 23978-2009</td>
<td>液状染料 氯离子含量的测定 离子色谱法</td>
<td></td>
</tr>
<tr>
<td>GB 1610-2009</td>
<td>中华人民共和国国家标准</td>
<td>工业铬酸酐 硫酸盐含量测定 离子色谱法</td>
</tr>
<tr>
<td>GB 24533-2009</td>
<td>中华人民共和国国家标准</td>
<td>锂离子电池石墨类负极材料 附录I 阴离子的测试方法</td>
</tr>
<tr>
<td>GB 24533-2009</td>
<td>中华人民共和国国家标准</td>
<td>锂离子电池石墨类负极材料 附录J 全硫的测试方法</td>
</tr>
</tbody>
</table>
赛默飞致力于帮助您使世界变得

ICS系列离子色谱
应用技术专辑（二）

更安全 更清洁 更健康

赛默飞飞色谱（中国）有限公司

免费服务热线：800 810 5118
400 650 5118（支持手机用户）